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/ Preface

After studying this text, you should be able to apply switching theory to the solution of
logic design problems. This means that you will learn both the basic theory of switching
circuits and how to apply it. After a brief introduction, you will study Boolean algebra,
which is the basic mathematical tool needed to analyze and synthesize an important
class of switching circuits. Starting from a problem statement, you will learn to design
circuits of logic gates that have a specified relationship between signals at the input and
output terminals. Then you will study the logical properties of flip-flops, which serve as
memory devices in sequential switching circuits. By combining flip-flops with circuits of
logic gates, you will learn to design counters, adders, sequence detectors, and similar cir-
cuits. You will also study the VHDL hardware description language and its application
to the design of combinational logic, sequential logic, and simple digital systems.

The fifth edition offers a number of improvements over the fourth edition. Material
in the text has been reorganized to provide a better teaching sequence, and obsolete
material has been removed. The chapter on latches and flip-flops has been rewritten.
Greater empbhasis is placed on the use of programmable logic devices (PLDs), includ-
ing programmable gate arrays and complex PLDs. New exercises and problems have
been added to every unit, and several sections have been rewritten to clarify the pres-
entation. Three chapters on the VHDL hardware description language have been
added, and more emphasis is placed on the role of simulation and computer-aided
design of logic circuits.

This text is designed so that it can be used in either a standard lecture course or
in a self-paced course. In addition to the standard reading material and problems,
study guides and other aids for self-study are included in the text. The content of the
text is divided into 20 study units. These units form a logical sequence so that mas-
tery of the material in one unit is generally a prerequisite to the study of succeeding
units. Each unit consists of four parts. First, a list of objectives states precisely what
you are expected to learn by studying the unit. Next, the study guide contains read-
ing assignments and study questions. As you work through the unit, you should write
out the answers to these study questions. The text material and problem set that fol-
low are similar to a conventional textbook. When you complete a unit, you should
review the objectives and make sure that you have met them.

XV

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

XVi Preface

The study units are divided into three main groups. The first 9 units treat Boolean
algebra and the design of combinational logic circuits. Units 11 through 16,18 and 19
are mainly concerned with the analysis and design of clocked sequential logic cir-
cuits, including circuits for arithmetic operations. Units 10, 17, and 20 introduce the
VHDL hardware description language and its application to logic design.

Since the computer plays an important role in the logic design process, integra-
tion of computer usage into the first logic design course is very important. A com-
puter-aided logic design program, called LogicAid, is included on the CD provided
with this textbook. LogicAid allows the student easily to derive simplified logic equa-
tions from minterms, truth tables, and state tables. This relieves the student of some
of the more tedious computations and permits the solution of more complex design
problems in a shorter time. LogicAid also provides tutorial help for Karnaugh maps
and derivation of state graphs.

Several of the units include simulation or laboratory exercises. These exercises
provide an opportunity to design a logic circuit and then test its operation. The
SimUaid logic simulator, provided on the CD, may be used to verify the logic
designs. The lab equipment required for testing either can be a breadboard with
integrated circuit flip-flops and logic gates or a circuit board with a programmable
logic device. If such equipment is not available, the lab exercises can be simulated
with SimUaid or just assigned as design problems. This is especially important for
Units 8, 16, and 20 because the comprehensive design problems in these units help
to review and tie together the material in several of the preceding units.

As integrated circuit technology continues to improve to allow more components
on a chip, digital systems continue to grow in complexity. Design of such complex sys-
tems is facilitated by the use of a hardware description language such as VHDL. This
text introduces the use of VHDL in logic design and emphasizes the relationship
between VHDL statements and the corresponding digital hardware. VHDL allows
digital hardware to be described and simulated at a higher level before it is imple-
mented with logic components. Computer programs for synthesis can convert a
VHDL description of a digital system to a corresponding set of logic components
and their interconnections. Even though use of such computer-aided design tools
helps to automate the logic design process, we believe that it is important to under-
stand the underlying logic components and their timing before writing VHDL code.
By first implementing the digital logic manually, students more fully can appreciate
the power and limitations of VHDL.

This text is written for a first course in the logic design of digital systems. It is writ-
ten on the premise that the student should understand and learn thoroughly certain
fundamental concepts in a first course. Examples of such fundamental concepts are
the use of Boolean algebra to describe the signals and interconnections in a logic cir-
cuit, use of systematic techniques for simplification of a logic circuit, interconnection
of simple components to perform a more complex logic function, analysis of a
sequential logic circuit in terms of timing charts or state graphs, and use of a control
circuit to control the sequence of events in a digital system.

The text attempts to achieve a balance between theory and application. For this
reason, the text does not overemphasize the mathematics of switching theory; how-
ever, it does present the theory that is necessary for understanding the fundamental
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concepts of logic design. After completing this text, the student should be prepared
for a more advanced digital systems design course that stresses more intuitive con-
cepts like the development of algorithms for digital processes, partitioning of digital
systems into subsystems, and implementation of digital systems using currently avail-
able hardware. Alternatively, the student should be prepared to go on to a more
advanced course in switching theory that further develops the theoretical concepts
that have been introduced here.

Although the technology used to implement digital systems has changed signifi-
cantly since the first edition of this text was published, the fundamental principles
of logic design have not. Truth tables and state tables still are used to specify the
behavior of logic circuits, and Boolean algebra is still a basic mathematical tool for
logic design. Even when programmable logic devices are used instead of individual
gates and flip-flops, reduction of logic equations is still desirable in order to fit the
equations into smaller PLDs. Making a good state assignment is still desirable,
because without a good assignment, the logic equations may require larger PLDs.

The text is suitable for both computer science and engineering students. Material
relating to circuit aspects of logic gates is contained in Appendix A so that this
material can conveniently be omitted by computer science students or other students
with no background in electronic circuits. The text is organized so that Unit 6 on the
Quine-McCluskey procedure may be omitted without loss of continuity. The three
units on VHDL can be studied in the normal sequence, studied together after the
other units, or omitted entirely.

Although many texts are available in the areas of switching theory and logic
design, this text was originally developed to meet the needs of a self-paced course in
which students are expected to study the material on their own. Each of the units has
undergone extensive class testing in a self-paced environment and has been revised
based on student feedback.

Study guides and text material have been expanded as required so that students
can learn from the text without the aid of lectures and so that almost all of the students
can achieve mastery of all of the objectives. Supplementary materials were developed
as the text was being written. An instructor’s manual is available that includes sugges-
tions for using the text in a standard or self-paced course, quizzes on each of the units,
and suggestions for laboratory equipment and procedures. The instructor’s manual
also contains solutions to problems, to unit quizzes, and to lab exercises.

To be effective, a book designed for self-study cannot simply be written. It must
be tested and revised many times to achieve its goals. I wish to express my apprecia-
tion to the many professors, proctors, and students who participated in this process.
Special thanks go to Dr. David Brown, who worked with me in teaching the self-
paced course, and who made many helpful suggestions for improving the text. I am
especially grateful to graduate teaching assistant, Mark Story, who developed many
new problems and solutions for the fifth edition and who offered many suggestions
for improving the consistency and clarity of the presentation.

Charles H. Roth, Jr.
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Preface to the Sixth
Edition

The major change in the sixth edition of the text is the addition of over 150 new prob-
lems and the modification of several of the fifth edition problems. Substantial new dis-
cussion was added to the units on VHDL. Other topics receiving expanded discussion
are hazards, latches and one-hot state assignments. In addition, the logic design and
simulation software that accompanies the text has been updated and improved.

Larry L. Kinney Charles H. Roth, Jr.

Xviii
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How to Use This Book
for Self-Study

If you wish to learn all of the material in this text to mastery level, the following
study procedures are recommended for each unit:

1. Read the Objectives of the unit. These objectives provide a concise summary of
what you should be able to do when you complete study of the unit.

2. Work through the Study Guide. After reading each section of the text, write out the
answers to the corresponding study guide questions. In many cases, blank spaces are
left in the study guide so that you can write your answers directly in this book. By
doing this, you will have the answers conveniently available for later review. The
study guide questions generally will help emphasize some of the important points
in each section or will guide you to a better understanding of some of the more dif-
ficult points. If you cannot answer some of the study guide questions, this indicates
that you need to study the corresponding section in the text more before proceed-
ing. The answers to selected study guide questions are given in the back of this book;
answers to the remaining questions generally can be found within the text.

3. Several of the units (Units 3, 5, 6, 11, 13, 14, and 18) contain one or more pro-
grammed exercises. Each programmed exercise will guide you step-by-step
through the solution of one of the more difficult types of problems encountered
in this text. When working through a programmed exercise, be sure to write
down your answer for each part in the space provided before looking at the an-
swer and continuing with the next part of the exercise.

4. Work the assigned Problems at the end of the unit. Check your answers against
those at the end of the book and rework any problems that you missed.

5. Reread the Objectives of the unit to make sure that you can meet all of them. If
in doubt, review the appropriate sections of the text.

6. If you are using this text in a self-paced course, you will need to pass a readiness
test on each unit before proceeding with the next unit. The purpose of the readi-
ness test is to make sure that you have mastered the objectives of one unit before
moving on to the next unit. The questions on the test will relate directly to the ob-
jectives of the unit, so that if you have worked through the study guide and writ-
ten out answers to all of the study guide questions and to the problems assigned in
the study guide, you should have no difficulty passing the test.

Xix
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Introduction
Number Systems and Conversion

Objectives

1.

Introduction

The first part of this unit introduces the material to be studied later. In
addition to getting an overview of the material in the first part of the
course, you should be able to explain

a. The difference between analog and digital systems and why digital
systems are capable of greater accuracy

b. The difference between combinational and sequential circuits

¢. Why two-valued signals and binary numbers are commonly used in
digital systems

Number systems and conversion
When you complete this unit, you should be able to solve the following
types of problems:

a. Given a positive integer, fraction, or mixed number in any base
(2 through 16); convert to any other base. Justify the procedure used
by using a power series expansion for the number.

b. Add, subtract, multiply, and divide positive binary numbers. Explain
the addition and subtraction process in terms of carries and borrows.

¢. Write negative binary numbers in sign and magnitude, 1's comple-
ment, and 2's complement forms. Add signed binary numbers using
1's complement and 2's complement arithmetic. Justify the methods
used. State when an overflow occurs.

d. Represent a decimal number in binary-coded-decimal (BCD), 6-3-1-1
code, excess-3 code, etc. Given a set of weights, construct a
weighted code.

1
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Study Guide

1. Study Section 1.1, Digital Systems and Switching Circuits, and answer the fol-
lowing study questions:

(a) What is the basic difference between analog and digital systems?
(b) Why are digital systems capable of greater accuracy than analog systems?

(c) Explain the difference between combinational and sequential switching
circuits.

(d) What common characteristic do most switching devices used in digital
systems have?

(e) Why are binary numbers used in digital systems?

2. Study Section 1.2, Number Systems and Conversion. Answer the following study
questions as you go along:

(a) Isthe first remainder obtained in the division method for base conversion
the most or least significant digit?

(b) Work through all of the examples in the text as you encounter them and
make sure that you understand all of the steps.

(¢) An easy method for conversion between binary and hexadecimal is illus-
trated in Equation (1-1). Why should you start forming the groups of four
bits at the binary point instead of the left end of the number?

(d) Why is it impossible to convert a decimal number to binary on a digit-by-
digit basis as can be done for hexadecimal?
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Number Systems and Conversion 3

(e) Complete the following conversion table.

Binary Octal Decimal Hexadecimal
(base 2) (base 8) (base 10) (base 16)

0 0 0 0

1

10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111
10000 20 16 10

(f) Work Problems 1.1,1.2,1.3, and 1.4.

3. Study Section 1.3, Binary Arithmetic.

(a) Make sure that you can follow all of the examples, especially the propaga-
tion of borrows in the subtraction process.
(b) To make sure that you understand the borrowing process, work out a
detailed analysis in terms of powers of 2 for the following example:
1100
— 101

111

4. Work Problems 1.5, 1.6, and 1.17(a).

5. Study Section 1.4, Representation of Negative Numbers.

(a) In digital systems, why are 1’s complement and 2’s complement commonly
used to represent negative numbers instead of sign and magnitude?
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4 unit1

(b) State two different ways of forming the 1’s complement of an n-bit binary
number.

(c) State three different ways of forming the 2’s complement of an n-bit
binary number.

(d) If the word length is n = 4 bits (including sign), what decimal number does
1000, represent in sign and magnitude?
In 2’s complement?
In 1’s complement?

(e) Given a negative number represented in 2’s complement, how do you
find its magnitude?

Given a negative number represented in 1’s complement, how do you
find its magnitude?

(f) If the word length is 6 bits (including sign), what decimal number does
100000, represent in sign and magnitude?

In 2’s complement?
In 1’s complement?

(g) What is meant by an overflow? How can you tell that an overflow has
occurred when performing 1’s or 2’s complement addition?

Does a carry out of the last bit position indicate that an overflow has
occurred?
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Number Systems and Conversion 5

(h) Work out some examples of 1’s and 2’s complement addition for various
combinations of positive and negative numbers.

(i) What is the justification for using the end-around carry in 1’s complement
addition?

(j) The one thing that causes the most trouble with 2’s complement numbers
is the special case of the negative number which consists of a 1 followed by
all 0%s (1000 . . . 000). If this number is # bits long, what number does it rep-
resent and why? (It is not negative zero.)

(k) Work Problems 1.7 and 1.8.

Study Section 1.5, Binary Codes.
(a) Represent 187 in BCD code, excess-3 code, 6-3-1-1 code, and 2-out-of-5 code.

(b) Verify that the 6-3-1-1 code is a weighted code. Note that for some decimal
digits, two different code combinations could have been used. For example,
either 0101 or 0110 could represent 4. In each case the combination with
the smaller binary value has been used.

(c) How is the excess-3 code obtained?

(d) How are the ASCII codes for the decimal digits obtained? What is the rela-
tion between the ASCII codes for the capital letters and lowercase letters?

(e) Work Problem 1.9.

If you are taking this course on a self-paced basis, you will need to pass a readi-
ness test on this unit before going on to the next unit. The purpose of the readi-
ness test is to determine if you have mastered the material in this unit and are
ready to go on to the next unit. Before you take the readiness test:

(a) Check your answers to the problems against those provided at the end of
this book. If you missed any of the problems, make sure that you under-
stand why your answer is wrong and correct your solution.

(b) Make sure that you can meet all of the objectives listed at the beginning
of this unit.
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Introduction
Number Systems and Conversion

1.1 Digital Systems and Switching Circuits

Digital systems are used extensively in computation and data processing, control
systems, communications, and measurement. Because digital systems are capable of
greater accuracy and reliability than analog systems, many tasks formerly done by
analog systems are now being performed digitally.

In a digital system, the physical quantities or signals can assume only discrete
values, while in analog systems the physical quantities or signals may vary con-
tinuously over a specified range. For example, the output voltage of a digital sys-
tem might be constrained to take on only two values such as 0 volts and 5 volts,
while the output voltage from an analog system might be allowed to assume any
value in the range —10 volts to +10 volts.

Because digital systems work with discrete quantities, in many cases they can be
designed so that for a given input, the output is exactly correct. For example, if we
multiply two 5-digit numbers using a digital multiplier, the 10-digit product will be
correct in all 10 digits. On the other hand, the output of an analog multiplier might
have an error ranging from a fraction of one percent to a few percent depending
on the accuracy of the components used in construction of the multiplier.
Furthermore, if we need a product which is correct to 20 digits rather than 10, we
can redesign the digital multiplier to process more digits and add more digits to its
input. A similar improvement in the accuracy of an analog multiplier would not be
possible because of limitations on the accuracy of the components.

The design of digital systems may be divided roughly into three parts—system
design, logic design, and circuit design. System design involves breaking the over-
all system into subsystems and specifying the characteristics of each subsystem. For
example, the system design of a digital computer could involve specifying the num-
ber and type of memory units, arithmetic units, and input-output devices as well
as the interconnection and control of these subsystems. Logic design involves
determining how to interconnect basic logic building blocks to perform a specific
function. An example of logic design is determining the interconnection of logic
gates and flip-flops required to perform binary addition. Circuit design involves
specifying the interconnection of specific components such as resistors, diodes, and
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transistors to form a gate, flip-flop, or other logic building block. Most contempo-
rary circuit design is done in integrated circuit form using appropriate computer-
aided design tools to lay out and interconnect the components on a chip of silicon.
This book is largely devoted to a study of logic design and the theory necessary for
understanding the logic design process. Some aspects of system design are treated
in Units 18 and 20. Circuit design of logic gates is discussed briefly in Appendix A.

Many of a digital system’s subsystems take the form of a switching circuit
(Figure 1-1). A switching circuit has one or more inputs and one or more outputs
which take on discrete values. In this text, we will study two types of switching
circuits—combinational and sequential. In a combinational circuit, the output val-
ues depend only on the present value of the inputs and not on past values. In a
sequential circuit, the outputs depend on both the present and past input values. In
other words, in order to determine the output of a sequential circuit, a sequence of
input values must be specified. The sequential circuit is said to have memory
because it must “remember” something about the past sequence of inputs, while a
combinational circuit has no memory. In general, a sequential circuit is composed of
a combinational circuit with added memory elements. Combinational circuits are
easier to design than sequential circuits and will be studied first.

FIGURE 1-1
Switching Circuit

Switching

Circuit

The basic building blocks used to construct combinational circuits are logic gates.
The logic designer must determine how to interconnect these gates in order to convert
the circuit input signals into the desired output signals. The relationship between these
input and output signals can be described mathematically using Boolean algebra. Units
2 and 3 of this text introduce the basic laws and theorems of Boolean algebra and show
how they can be used to describe the behavior of circuits of logic gates.

Starting from a given problem statement, the first step in designing a combina-
tional logic circuit is to derive a table or the algebraic logic equations which describe
the circuit outputs as a function of the circuit inputs (Unit 4). In order to design
an economical circuit to realize these output functions, the logic equations
which describe the circuit outputs generally must be simplified. Algebraic methods
for this simplification are described in Unit 3, and other simplification methods
(Karnaugh map and Quine-McCluskey procedure) are introduced in Units 5 and 6.
Implementation of the simplified logic equations using several types of gates is
described in Unit 7, and alternative design procedures using programmable logic
devices are developed in Unit 9.

The basic memory elements used in the design of sequential circuits are called
flip-flops (Unit 11). These flip-flops can be interconnected with gates to form coun-
ters and registers (Unit 12). Analysis of more general sequential circuits using

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net
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timing diagrams, state tables, and graphs is presented in Unit 13. The first step in
designing a sequential switching circuit is to construct a state table or graph which
describes the relationship between the input and output sequences (Unit 14).
Methods for going from a state table or graph to a circuit of gates and flip-flops are
developed in Unit 15. Methods of implementing sequential circuits using program-
mable logic are discussed in Unit 16. In Unit 18, combinational and sequential
design techniques are applied to the realization of systems for performing binary
addition, multiplication, and division. The sequential circuits designed in this text
are called synchronous sequential circuits because they use a common timing sig-
nal, called a clock, to synchronize the operation of the memory elements.

Use of a hardware description language, VHDL, in the design of combinational
logic, sequential logic, and digital systems is introduced in Units 10, 17, and 20.
VHDL is used to describe, simulate, and synthesize digital hardware. After writing
VHDL code, the designer can use computer-aided design software to compile the
hardware description and complete the design of the digital logic. This allows the
completion of complex designs without having to manually work out detailed circuit
descriptions in terms of gates and flip-flops.

The switching devices used in digital systems are generally two-state devices,
that is, the output can assume only two different discrete values. Examples of
switching devices are relays, diodes, and transistors. A relay can assume two
states—closed or open—depending on whether power is applied to the coil or not.
A diode can be in a conducting state or a nonconducting state. A transistor can be
in a cut-off or saturated state with a corresponding high or low output voltage. Of
course, transistors can also be operated as linear amplifiers with a continuous
range of output voltages, but in digital applications greater reliability is obtained
by operating them as two-state devices. Because the outputs of most switching
devices assume only two different values, it is natural to use binary numbers
internally in digital systems. For this reason binary numbers and number systems
will be discussed first before proceeding to the design of switching circuits.

1.2 Number Systems and Conversion

When we write decimal (base 10) numbers, we use a positional notation; each digit
is multiplied by an appropriate power of 10 depending on its position in the num-
ber. For example,

953.78,) = 9 X 107 + 5 X 10 +3 X 10° + 7 X 10" + 8 X 102

Similarly, for binary (base 2) numbers, each binary digit is multiplied by the appro-
priate power of 2:

101111, =1X22+0Xx22+1x2'+1x2°+1x2'+1x27?
=8+0+2+1+1+1=113=1175,
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Note that the binary point separates the positive and negative powers of 2 just as
the decimal point separates the positive and negative powers of 10 for decimal
numbers.

Any positive integer R (R > 1) can be chosen as the radix or base of a number sys-
tem. If the base is R, then R digits (0,1,. .., R—1) are used. For example, if R = 8,then
the required digits are 0, 1,2, 3,4, 5, 6, and 7. A number written in positional nota-
tion can be expanded in a power series in R. For example,

N = (aa30,0100.a_1a_2a_3)
=g XR*+a;XR*+a, X R*+a; X R' +ay, X R’
+a, XR'+a,XR?+a_3;XR3

where a; is the coefficient of R' and 0 =< 4; = R—1.If the arithmetic indicated in the
power series expansion is done in base 10, then the result is the decimal equivalent
of N. For example,

14733 =1 X8 +4x8 +7x8+3x8'=64+32+7+

The power series expansion can be used to convert to any base. For example,
converting 147;, to base 3 would be written as

147, = 1 X (101)2 + (11) X (101)! + (21) X (101)°

where all the numbers on the right-hand side are base 3 numbers. (Note: In
base 3, 10 is 101, 7 is 21, etc.) To complete the conversion, base 3 arithmetic
would be used. Of course, this is not very convenient if the arithmetic is being
done by hand. Similarly, if 147,, is being converted to binary, the calculation
would be

147, = 1 X (1010)2 + (100) X (1010)" + (111) X (1010)"

Again this is not convenient for hand calculation but it could be done easily in a
computer where the arithmetic is done in binary. For hand calculation, use the
power series expansion when converting from some base into base 10.

For bases greater than 10, more than 10 symbols are needed to represent the
digits. In this case, letters are usually used to represent digits greater than 9. For
example, in hexadecimal (base 16), A represents 10,,, B represents 11,,, C repre-
sents 12,,, D represents 13y, E represents 14,,, and F represents 15;,. Thus,

A2Fc = 10 X 16> + 2 X 16! + 15 X 16° = 2560 + 32 + 15 = 2607,

Next, we will discuss conversion of a decimal integer to base R using the division
method. The base R equivalent of a decimal integer N can be represented as

N = (a,a,_, - - ayaa0)g = a,R" + a,_,R" ' + - - - + a,R*> + a,R" + q,
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If we divide N by R, the remainder is a:

N .
R a,R" ' +a, \R"*+ - -+ a,R' + a;, = Q,, remainder q,

Then we divide the quotient Q; by R:

% =a,R"7*+a, |R"> + -+ a;R" + a, = O,, remainder a,

Next we divide O, by R:

% — aan73 + an,an74 +ootay= Q3, remainder a,

This process is continued until we finally obtain a,. Note that the remainder
obtained at each division step is one of the desired digits and the least significant
digit is obtained first.

— Convert 53, to binary.
Example

2 /53

2/26 rem. =1 = q,

2/13 rem. =0=a

2/6 rem.=1=a, 53, =110101,
2/3 rem. =0 = ay

2 /1 rem.=1=aq,

0 rem. =1 = as

Conversion of a decimal fraction to base R can be done using successive multi-
plications by R. A decimal fraction F can be represented as

F= (.a_1 a_,a_z--: a_m)R =da_q R_l + a_zR_z + a_3R_3 + -+ a_mR_m
Multiplying by R yields
FR=a_,+a ,R'"+aR?*+ - +a_,R"™'=a_,+F

where F| represents the fractional part of the result and a_; is the integer part.
Multiplying F; by R yields

F]R =a_, + ﬂ,3R71 + .-+ a,mRim+2 =a_, + F2
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Next, we multiply F, by R:
FER=a s+ - +a, ,R"*=a,+F

This process is continued until we have obtained a sufficient number of digits. Note
that the integer part obtained at each step is one of the desired digits and the most
significant digit is obtained first.

— Convert 0.625, to binary.

Example
F= .625 F, = 250 F,= .500
X 2 X 2 X 2 625, = .101,
1.250 0.500 1.000
(a-y=1) (a-,=0) (a-3=1)

This process does not always terminate, but if it does not terminate, the result is
a repeating fraction.

— Convert 0.7, to binary.
Example

—~ —_ —_ —~ —_
N AN NN NN 0N KN

«—— process starts repeating here because 0.4 was previously
obtained

0.7, = 0.1 0110 0110 0110 .. .,

—~
(=)
~
e )

Conversion between two bases other than decimal can be done directly by using
the procedures given; however, the arithmetic operations would have to be carried
out using a base other than 10. It is generally easier to convert to decimal first and
then convert the decimal number to the new base.
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— Convert 231.3, to base 7.
Example

2313, =2 X 16 +3 X4+ 1+3=4575

7 /45 75
7 & rem. 3 7

0 rem.6 (5).25  45.75,=635151...,
7
1) .75
7
() 25
7

(1) .75

Conversion from binary to hexadecimal (and conversely) can be done by inspection
because each hexadecimal digit corresponds to exactly four binary digits (bits).
Starting at the binary point, the bits are divided into groups of four, and each group
is replaced by a hexadecimal digit:
0100 1101 0101 1100
1001101.010111, = — —-—— ——=4D.5 1-1

2 4 D 3 C C16 ( )
As shown in Equation (1-1), extra 0’s are added at each end of the bit string as
needed to fill out the groups of four bits.

1.3 Binary Arithmetic

Arithmetic operations in digital systems are usually done in binary because design
of logic circuits to perform binary arithmetic is much easier than for decimal. Binary
arithmetic is carried out in much the same manner as decimal, except the addition
and multiplication tables are much simpler.

The addition table for binary numbers is

0+0=0
0+1=1
1+0=1

1+1=0  andcarry 1 to the next column

Carrying 1 to a column is equivalent to adding 1 to that column.
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— A dd 13,, and 11,, in binary.

Example
1111 ¢— carries
13,y = 1101
11,y = 1011
11000 = 2410
The subtraction table for binary numbers is
0-0=0
0-1=1 and borrow 1 from the next column
1-0=1
1-1=0
Borrowing 1 from a column is equivalent to subtracting 1 from that column.
— () 1¢<— (indicates (b) 1111¢—— borrows (c) 111¢—— borrows
Exan_wples 11101  a borrrow 10000 111001
of Blngry —10011  from the - 1 — 1011
Subtraction 1010 3rd column) 1101 101110

Note how the borrow propagates from column to column in the second exam-
ple. In order to borrow 1 from the second column, we must in turn borrow 1 from
the third column, etc. An alternative to binary subtraction is the use of 2’s comple-
ment arithmetic, as discussed in Section 1.4.

Binary subtraction sometimes causes confusion, perhaps because we are so used
to doing decimal subtraction that we forget the significance of the borrowing
process. Before doing a detailed analysis of binary subtraction, we will review the
borrowing process for decimal subtraction.

If we number the columns (digits) of a decimal integer from right to
left (starting with 0), and then we borrow 1 from column n, what we mean is that
we subtract 1 from column n and add 10 to column n — 1. Because 1 X 10" =
10 X 10""!, the value of the decimal number is unchanged, but we can proceed
with the subtraction. Consider, for example, the following decimal subtraction
problem:

column 2 folumn 1

205
— 18

187
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A detailed analysis of the borrowing process for this example, indicating first a bor-
row of 1 from column 1 and then a borrow of 1 from column 2, is as follows:

205 — 18 = [2 X 10> + 0 X 10" + 5 X 10]
- 1 X 10" + 8 X 10°]
note borrow from column 1
=[2 X104+ (0 — 1) X 10" + (10 + 5) X 10°]
- 1 x10'+ 8 X 10°]
I 1 note borrow from column 2
=[(2—-1)x10*+ (10 + 0 — 1) X 10" + 15 X 10
—[ 1 X 10" + 8 x 10
=[1 x 10? + 8 x10! + 7 X 10°] =187

The analysis of borrowing for binary subtraction is exactly the same, except that we
work with powers of 2 instead of powers of 10. Thus for a binary number, borrowing 1
from column 7 is equivalent to subtracting 1 from column » and adding 2 (10,) to col-
umn n — 1. The value of the binary number is unchanged because 1 X 2" =2 x 2""!,

A detailed analysis of binary subtraction example (c) follows. Starting with the
rightmost column, 1 — 1 = 0. To subtract in the second column, we must borrow
from the third column. Rather than borrow immediately, we place a 1 over the third
column to indicate that a borrow is necessary, and we will actually do the borrowing
when we get to the third column. (This is similar to the way borrow signals might
propagate in a computer.) Now because we have borrowed 1, the second column
becomes 10, and 10 — 1 = 1. In order to borrow 1 from the third column, we must
borrow 1 from the fourth column (indicated by placing a 1 over column 4). Column
3 then becomes 10, subtracting off the borrow yields 1, and 1 — 0 = 1. Now in col-
umn 4, we subtract off the borrow leaving 0. In order to complete the subtraction,
we must borrow from column 5, which gives 10 in column 4, and 10 — 1 = 1.

The multiplication table for binary numbers is

0x0=0
0x1=0
1X0=0
1xX1=1

The following example illustrates multiplication of 13, by 11,, in binary:

1101
1011

1101
1101
0000
1101

10001111 = 143y,
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Note that each partial product is either the multiplicand (1101) shifted over the
appropriate number of places or is zero.

When adding up long columns of binary numbers, the sum of the bits in a sin-
gle column can exceed 11,, and therefore the carry to the next column can be
greater than 1. For example, if a single column of bits contains five 1’s, then
adding up the 1’s gives 101,, which means that the sum bit for that column is 1,
and the carry to the next column is 10,. When doing binary multiplication, a com-
mon way to avoid carries greater than 1 is to add in the partial products one at a
time as illustrated by the following example:

1111 multiplicand
1101 multiplier
1111 first partial product

0000 second partial product
(01111) sum of first two partial products
1111 third partial product
(1001011) sum after adding third partial product
1111 fourth partial product

11000011 final product (sum after adding fourth partial product)
The following example illustrates division of 145, by 11,, in binary:

1101

1011{10010001

1011

1110
1011

1101 The quotient is 1101 with a remainder
1011 of 10.

10

Binary division is similar to decimal division, except it is much easier because the
only two possible quotient digits are 0 and 1. In the above example, if we start by
comparing the divisor (1011) with the upper four bits of the dividend (1001), we
find that we cannot subtract without a negative result, so we move the divisor
one place to the right and try again. This time we can subtract 1011 from 10010
to give 111 as a result, so we put the first quotient bit of 1 above 10010. We then
bring down the next dividend bit (0) to get 1110 and shift the divisor right. We
then subtract 1011 from 1110 to get 11, so the second quotient bit is 1. When we
bring down the next dividend bit, the result is 110, and we cannot subtract the
shifted divisor, so the third quotient bit is 0. We then bring down the last divi-
dend bit and subtract 1011 from 1101 to get a final remainder of 10, and the last
quotient bit is 1.
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1.4 Representation of Negative Numbers

Up to this point we have been working with unsigned positive numbers. In most
computers, in order to represent both positive and negative numbers the first bit in
a word is used as a sign bit, with 0 used for plus and 1 used for minus. Several rep-
resentations of negative binary numbers are possible. The sign and magnitude sys-
tem is similar to that which people commonly use. For an n-bit word, the first bit is
the sign and the remaining n — 1 bits represent the magnitude of the number. Thus
an n-bit word can represent any one of 2"~ ! positive integers or 2"~ ! negative inte-
gers. Table 1-1 illustrates this for n = 4. For example, 0011 represents +3 and 1011
represents —3. Note that 1000 represents minus zero in the sign and magnitude sys-
tem and —8 in the 2’s complement system.

The design of logic circuits to do arithmetic with sign and magnitude binary
numbers is awkward; therefore, other representations are often used. The 2’s com-
plement and 1’s complement are commonly used because arithmetic units are easy
to design using these systems. For the 2’s complement number system, a positive
number, N, is represented by a 0 followed by the magnitude as in the sign and mag-
nitude system; however, a negative number, — N, is represented by its 2’s comple-
ment, N*. If the word length is n bits, the 2’s complement of a positive integer N is
defined as for a word length of # bits.

N#=2"—N (1-2)

For n = 4, — N is represented by 16 — N as shown in Table 1-1. For example, —3 is
represented by 16 — 3 = 13 = 1101,. As is the case for sign and magnitude numbers,
all negative 2’s complement numbers have a 1 in the position furthest to the left
(sign bit).

For the 1’s complement system a negative number, —N, is represented by its 1’s
complement, N. The 1’s complement of a positive integer N is defined as

N=@2'-1)-N (1-3)

TABLE 1-1 Negative Integers

Si d Bi Positive
'gned Binary Integers Sign and 2's Complement | 1's Complement
Integers (word p

length: n = 4) +N (all systems) -N Magnitude N* N
+0 0000 -0 1000 —_— 1111
+1 0001 -1 1001 1111 1110
+2 0010 -2 1010 1110 1101
+3 0011 -3 1011 1101 1100
+4 0100 -4 1100 1100 1011
+5 0101 -5 1101 1011 1010
+6 0110 -6 1110 1010 1001
+7 0111 -7 1111 1001 1000

-8 —_— 1000 —_—
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Note that 1111 represents minus zero, and — 8 has no representation in a 4-bit
system. An alternate way to form the 1’s complement is to simply complement N
bit-by-bit by replacing 0’s with 1’s and 1’s with 0’s. This is equivalent to the defini-
tion, Equation (1-3), because 2" — 1 consists of all 1’s, and subtracting a bit from 1
is the same as complementing the bit. No borrows occur in this subtraction. For
example, if n = 6 and N = 010101,

2 —1=111111
N = 010101
N = 101010

From Equations (1-2) and (1-3).
N#=2"-N=@2"-1-N)+1=N+1

so the 2’s complement can be formed by complementing N bit-by-bit and then
adding 1. An easier way to form the 2’s complement of N is to start at the right and
complement all bits to the left of the first 1. For example, if

N = 0101100, then N* = 1010100
From Equations (1-2) and (1-3),
N=2"-N*¥ and N=(2"-1)—-N

Therefore, given a negative integer represented by its 2’s complement (N*), we can
obtain the magnitude of the integer by taking the 2’s complement of N*. Similarly,
to get the magnitude of a negative integer represented by its 1’s complement (N ),
we can take the 1’s complement of N.

In the 2’s complement system the number of negative integers which can be
represented is one more than the number of positive integers (not including 0). For
example, in Table 1-1, 1000 represents —8, because a sign bit of 1 indicates a negative
number, and if N = 8, N*¥ = 10000 — 1000 = 1000. In general, in a 2’s complement
system with a word length of » bits, the number 100 . . . 000 (1 followed by n — 1 0’s)
represents a negative number with a magnitude of

211 _ 2n71 — 2n71

This special case occurs only for 2’s complement. However, —0 has no representa-
tion in 2’s complement, but —0 is a special case for 1’s complement as well as for the
sign and magnitude system.

Addition of 2's Complement Numbers

The addition of n-bit signed binary numbers is straightforward using the 2’s comple-
ment system. The addition is carried out just as if all the numbers were positive, and
any carry from the sign position is ignored. This will always yield the correct result
except when an overflow occurs. When the word length is n bits, we say that an

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

18 unit 1

overflow has occurred if the correct representation of the sum (including sign) requires
more than 7 bits. The different cases which can occur are illustrated below for n = 4.

1. Addition of two positive numbers, sum < 2"~

+3 0011
+4 0100
+7 0111 (correct answer)

2. Addition of two positive numbers, sum = 2""!

+5 0101
+6 0110
1011 «—— wrong answer because of overflow (+11 requires
5 bits including sign)
3. Addition of positive and negative numbers (negative number has greater magnitude)
+5 0101
-6 1010
-1 1111 (correct answer)

4. Same as case 3 except positive number has greater magnitude

=5 1011
+6 0110
+1  (1)0001 «—— correct answer when the carry from the sign bit

is ignored (this is not an overflow)

5. Addition of two negative numbers, [sum| = 2"

-3 1101
-4 1100
=7 (1)1001 «—— correct answer when the last carry is ignored

(this is not an overflow)

6. Addition of two negative numbers, [sum| >2"""

=5 1011
—6 1010
(1)0101 «—— wrong answer because of overflow

(—11 requires 5 bits including sign)

Note that an overflow condition (cases 2 and 6) is easy to detect because in case 2
the addition of two positive numbers yields a negative result, and in case 6 the addi-
tion of two negative numbers yields a positive answer (for four bits).

The proof that throwing away the carry from the sign bit always gives the cor-
rect answer follows for cases 4 and 5:

Case4: —A + B (where B> A)
A*+B=2"-A)+B=2"+(B—A)>?2"
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Throwing away the last carry is equivalent to subtracting 2", so the resultis (B — A),
which is correct.

Case5: —A — B(where A+ B=2"1)
A+ B¥=(2"—A) + (2"~ B)=2"+2"— (A + B)

Discarding the last carry yields 2" — (A + B) = (A + B)*, which is the correct rep-
resentation of —(A + B).

Addition of 1's Complement Numbers

The addition of 1’s complement numbers is similar to 2’s complement except that
instead of discarding the last carry, it is added to the n-bit sum in the position fur-
thest to the right. This is referred to as an end-around carry. The addition of positive
numbers is the same as illustrated for cases 1 and 2 under 2’s complement. The
remaining cases are illustrated below (n = 4).

3. Addition of positive and negative numbers (negative number with greater

magnitude)
+5 0101
-6 1001
-1 1110 (correct answer)

4. Same as case 3 except positive number has greater magnitude

=5 1010
+6 0110
(1) 0000
L—1 (end-around carry)
0001 (correct answer, no overflow)

5. Addition of two negative numbers, |sum| < 2n1

-3 1100
-4 1011
(1) 0111
L—1 (end-around carry)
1000 (correct answer, no overflow)

6. Addition of two negative numbers, [sum| =2"""

=5 1010
—6 1001
(1) 0011
—1 (end-around carry)
0100 (wrong answer because of overflow)
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Again, note that the overflow in case 6 is easy to detect because the addition of two
negative numbers yields a positive result.

The proof that the end-round carry method gives the correct result follows for
cases 4 and 5:

Case4: — A+ B (where B> A)
A+B=2"-1-A)+B=2"+(B—-A)—1

The end-around carry is equivalent to subtracting 2" and adding 1, so the result is
(B — A), which is correct.

Case5: —A—-—B (A+B<2")
A+B=Q2"-1-A)+(2"-1-B)=2"+[2"-1-(A+B)] -1
After the end-around carry, the result is 2" — 1 — (A + B) = (A + B) which is the
correct representation for —(A + B).
The following examples illustrate the addition of 1’s and 2’s complement num-
bers for a word length of n = 8:
1. Add —11 and —20 in 1’s complement.
+11 = 00001011 +20 = 00010100
taking the bit-by-bit complement,
—11 is represented by 11110100 and —20 by 11101011

11110100  (—11)
11101011 +(—20)

(1) 11011111
L—— 1 (end-around carry)

11100000 = —31
2. Add —8and +19 in 2’s complement
+ 8 = 00001000

complementing all bits to the left of the first 1, —8, is represented by 11111000
11111000  (—8)
00010011  +19
00001011 = +11
T (discard last carry)

Note that in both cases, the addition produced a carry out of the furthest left
bit position, but there is no overflow because the answer can be correctly

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Number Systems and Conversion 21

represented by eight bits (including sign). A general rule for detecting overflow
when adding two n-bit signed binary numbers (1’s or 2’s complement) to get an
n-bit sum is:

An overflow occurs if adding two positive numbers gives a negative answer or if
adding two negative numbers gives a positive answer.

1.5 Binary Codes

Although most large computers work internally with binary numbers, the input-
output equipment generally uses decimal numbers. Because most logic circuits only
accept two-valued signals, the decimal numbers must be coded in terms of binary
signals. In the simplest form of binary code, each decimal digit is replaced by its
binary equivalent. For example, 937.25 is represented by

r\/ﬁ/gziz\r\\A

1001 0011 0111 . 0010 0101

This representation is referred to as binary-coded-decimal (BCD) or more explicitly
as 8-4-2-1 BCD. Note that the result is quite different than that obtained by convert-
ing the number as a whole into binary. Because there are only ten decimal digits, 1010
through 1111 are not valid BCD codes.

Table 1-2 shows several possible sets of binary codes for the ten decimal
digits. Many other possibilities exist because the only requirement for a

TABLE 1-2 8-4-2-1

Binary Codes for Decimal Code 6-3-1-1 Excess-3 2-out-of-5 Gray
Decimal Digits Digit (BCD) Code Code Code Code
0 0000 0000 0011 00011 0000

1 0001 0001 0100 00101 0001

2 0010 0011 0101 00110 0011

3 0011 0100 0110 01001 0010

4 0100 0101 0111 01010 0110

5 0101 0111 1000 01100 1110

6 0110 1000 1001 10001 1010

7 0111 1001 1010 10010 1011

8 1000 1011 1011 10100 1001

9 1001 1100 1100 11000 1000
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valid code is that each decimal digit be represented by a distinct combination
of binary digits. To translate a decimal number to coded form, each decimal
digit is replaced by its corresponding code. Thus 937 expressed in excess-3
code is 1100 0110 1010. The 8-4-2-1 (BCD) code and the 6-3-1-1 code are exam-
ples of weighted codes. A 4-bit weighted code has the property that if
the weights are w;, w,, wy, and w,, the code asa,a,a, represents a decimal num-
ber N, where

N = wiaz + woa, + wia; + wya,

For example, the weights for the 6-3-1-1 code are w3 = 6, w, = 3, w; = l,and w, = 1.
The binary code 1011 thus represents the decimal digit

N=61+30+11+11=8

The excess-3 code is obtained from the 8-4-2-1 code by adding 3 (0011) to
each of the codes. The 2-out-of-5 code has the property that exactly 2 out of the
5 bits are 1 for every valid code combination. This code has useful error-check-
ing properties because if any one of the bits in a code combination is changed
due to a malfunction of the logic circuitry, the number of 1 bits is no longer
exactly two. The table shows one example of a Gray code. A Gray code has the
property that the codes for successive decimal digits differ in exactly one bit. For
example, the codes for 6 and 7 differ only in the fourth bit, and the codes for
9 and 0 differ only in the first bit. A Gray code is often used when translating
an analog quantity, such as a shaft position, into digital form. In this case, a small
change in the analog quantity will change only one bit in the code, which
gives more reliable operation than if two or more bits changed at a time. The
Gray and 2-out-of-5 codes are not weighted codes. In general, the decimal value
of a coded digit cannot be computed by a simple formula when a non-weighted
code is used.

Many applications of computers require the processing of data which contains
numbers, letters, and other symbols such as punctuation marks. In order to transmit
such alphanumeric data to or from a computer or store it internally in a computer,
each symbol must be represented by a binary code. One common alphanumeric
code is the ASCII code (American Standard Code for Information Interchange).
This is a 7-bit code, so 27 (128) different code combinations are available to repre-
sent letters, numbers, and other symbols. Table 1-3 shows a portion of the ASCII
code; the code combinations not listed are used for special control functions such as
“form feed” or “end of transmission.” The word “Start” is represented in ASCII code
as follows:

1010011 1110100 1100001 1110010 1110100
S t a r t
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TABLE 1-3 ASCII Code

ASCII Code

ASCII Code

ASCII Code

Character Az As Ay As; A, AT A

Character

Character

0 00 00O
0 00 01
0 0O
00O
0 0 1
0 0 1

1
1
1
1
1
1

00 0O0OOO
0 0 0O0DO
0 00O

0 00O

1
1
1
1
1

10 00 00O
10 0 00O
0 00O
0 0O
00

1
1

0
0
0
0
0
0

space

1

1

1
1

0

1
1

0

1
1

"

00
01

0

1

00O

0
0

00

%

1
1

00O
00O
0 0
00
0 0
00
00

1
1

00 11

1

10 00
10 01

0 0O
0 01
0
0

1
1

H

0 00

1

0

K

0

L

100 00
100 01
00

10000

1000
00
00

100 00
1000
00

1

1

0

0

0
0

0

1 00
101

0
0

0 0O
0 01

1
1

0 0O

1

0 00

1

1

1

delete

Problems

Convert to hexadecimal and then to binary:

1.1

J

(c) 356.89,,

(d) 1063.5,,

(b) 123.17,,

~10

(a) 757.2

1.2 Convert to octal. Convert to hexadecimal. Then convert both of your answers to

decimal, and verify that they are the same.

(a) 111010110001.011,

10110011101.11,

(b)
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1.3 Convert to base 6: 3BA.25, (do all of the arithmetic in decimal).

1.4 (a) Convert to hexadecimal: 1457.11,,. Round to two digits past the hexadecimal point.
(b) Convert your answer to binary, and then to octal.
(c) Devise a scheme for converting hexadecimal directly to base 4 and convert your
answer to base 4.
(d) Convert to decimal: DEC.A.

1.5 Add, subtract, and multiply in binary:
(a) 1111 and 1010 (b) 110110 and 11101 (c) 100100 and 10110

1.6  Subtract in binary. Place a 1 over each column from which it was necessary to borrow.
(a) 11110100 — 1000111 (b) 1110110 — 111101 (c) 10110010 — 111101

1.7 Add the following numbers in binary using 2’s complement to represent negative num-
bers. Use a word length of 6 bits (including sign) and indicate if an overflow occurs.
(a) 21 + 11 (b) (—14) + (=32 (c) (=25) + 18
(d) (—=12) +13 (e) (—11) + (=21)
Repeat (a), (c), (d), and (e) using 1’s complement to represent negative numbers.

1.8 A computer has a word length of 8 bits (including sign). If 2’s complement is used to
represent negative numbers, what range of integers can be stored in the computer?
If 1’s complement is used? (Express your answers in decimal.)

1.9 Construct a table for 7-3-2-1 weighted code and write 3659 using this code.

1.10 Convert to hexadecimal and then to binary.
(a) 1305.375; (b) 111.33, (c) 301.124, (d) 1644.875,,

1.11 Convert to octal. Convert to hexadecimal. Then convert both of your answers to
decimal, and verify that they are the same.
(a) 101111010100.101, (b) 100001101111.01,

1.12 (a) Convert to base 3: 375.54; (do all of the arithmetic in decimal).
(b) Convert to base 4: 384.74,,.
(c) Convert to base 9: A52.A4,, (do all of the arithmetic in decimal).

1.13 Convert to hexadecimal and then to binary: 544.1,.

1.14 Convert the decimal number 97.7,, into a number with exactly the same value rep-
resented in the following bases. The exact value requires an infinite repeating part
in the fractional part of the number. Show the steps of your derivation.

(a) binary (b) octal (c) hexadecimal (d) base 3 (e) base 5

1.15 Devise a scheme for converting base 3 numbers directly to base 9. Use your method
to convert the following number to base 9: 1110212.20211;
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1.16 Convert the following decimal numbers to octal and then to binary:
(a) 2983%/, (b) 93.70 (c) 1900°"/5, (d) 109.30

1.17 Add, subtract, and multiply in binary:
(a) 1111 and 1001 (b) 1101001 and 110110 (c) 110010 and 11101

1.18 Subtract in binary. Place a 1 over each column from which it was necessary to borrow.
(a) 10100100 — 01110011 (b) 10010011 — 01011001
(c) 11110011 — 10011110

1.19 Divide in binary:
(a) 11101001 + 101 (b) 110000001 + 1110 (c) 1110010 =+ 1001
Check your answers by multiplying out in binary and adding the remainder.

1.20 Divide in binary:
(a) 10001101 + 110 (b) 110000011 = 1011 (c) 1110100 + 1010

1.21 Assume three digits are used to represent positive integers and also assume the fol-
lowing operations are correct. Determine the base of the numbers. Did any of the
additions overflow?

(a) 654 + 013 = 000
(b) 024 + 043 + 013 + 033 = 223
(c) 024 + 043 + 013 + 033 = 201

1.22 What is the lowest number of bits (digits) required in the binary number approxi-
mately equal to the decimal number 0.6117,, so that the binary number has the
same or better precision?

1.23 Convert 0.363636. . ., to its exact equivalent base 8 number.

1.24 (a) Verify that a number in base b can be converted to base b® by partitioning the
digits of the base b number into groups of three consecutive digits starting at the
radix point and proceeding both left and right and converting each group into
a base b® digit. (Hint: Represent the base b number using the power series
expansion.)

(b) Verify that a number in base b* can be converted to base b by expanding each
digit of the base b®> number into three consecutive digits starting at the radix
point and proceeding both left and right.

1.25 Construct a table for 4-3-2-1 weighted code and write 9154 using this code.

1.26 Is it possible to construct a 5-3-1-1 weighted code? A 6-4-1-1 weighted code? Justify
your answers.

1.27 Is it possible to construct a 5-4-1-1 weighted code? A 6-3-2-1 weighte code? Justify
your answers.
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1.28 Construct a 6-2-2-1 weighted code for decimal digits. What number does 1100 0011
represent in this code?

1.29 Construct a 5-2-2-1 weighted code for decimal digits. What numbers does 1110 0110
represent in this code?

1.30 Construct a 7-3-2-1 code for base 12 digits. Write B4A9 using this code.

1.31 (a) Itis possible to have negative weights in a weighted code for the decimal digits,
e.g., 8,4, —2,and —1 can be used. Construct a table for this weighted code.
(b) If d is a decimal digit in this code, how can the code for 9 — d be obtained?

1.32 Convert to hexadecimal, and then give the ASCII code for the resulting hexadecimal
number (including the code for the hexadecimal point):
(a) 222.22) (b) 183.81

1.33 Repeat 1.7 for the following numbers:

() (=10) + (=11)  (b) (=10) +(=6)  (c) (=8) + (~11)
(d) 11+9 (e) (—11) + (—4)

1.34 Because A — B = A + (—B), the subtraction of signed numbers can be accom-
plished by adding the complement. Subtract each of the following pairs of 5-bit
binary numbers by adding the complement of the subtrahend to the minuend.
Indicate when an overflow occurs. Assume that negative numbers are represented
in 1’s complement. Then repeat using 2’s complement.

(a) 01001 (b) 11010 (c) 10110 (d) 11011 (e) 11100
—11010 —11001 —01101 —00111 —10101

1.35 Work Problem 1.34 for the following pairs of numbers:
(a) 11010 (b) 01011 (c) 10001 (d) 10101
—10100 —11000 —01010 —11010

1.36 (a) A =101010 and B = 011101 are 1’s complement numbers. Perform the follow-
ing operations and indicate whether overflow occurs.
(i) A+B (ii)) A—B
(b) Repeat Part (a) assuming the numbers are 2’s complement numbers.

1.37 (a) Assume the integers below are 1’s complement integers. Find the 1’s comple-
ment of each number, and give the decimal values of the original number and
of its complement.

(1) 0000000 (i) 1111111 (iii) 00110011 (iv) 1000000
(b) Repeat, assuming the numbers are 2’s complement numbers and finding the 2’s
complement of them.
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Objectives

A list of 15 laws and theorems of Boolean algebra is given on page 55 of this
unit. When you complete this unit, you should be familiar with and be able
to use any of the first 12 of these. Specifically, you should be able to:

1. Understand the basic operations and laws of Boolean algebra.

2. Relate these operations and laws to circuits composed of AND gates, OR
gates, and INVERTERS. Also relate these operations and laws to circuits
composed of switches.

Prove any of these laws using a truth table.

4. Apply these laws to the manipulation of algebraic expressions including:

Multiplying out an expression to obtain a sum of products (SOP).
Factoring an expression to obtain a product of sums (POS).
Simplifying an expression by applying one of the laws.

Finding the complement of an expression.

onoo

27
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Study Guide

1. In this unit you will study Boolean algebra, the basic mathematics needed for the
logic design of digital systems. Just as when you first learned ordinary algebra, you
will need a fair amount of practice before you can use Boolean algebra effectively.
However, by the end of the course, you should be just as comfortable with Boolean
algebra as with ordinary algebra. Fortunately, many of the rules of Boolean alge-
bra are the same as for ordinary algebra, but watch out for some surprises!

2. Study Sections 2.1 and 2.2, Introduction and Basic Operations.

(a) How does the meaning of the symbols 0 and 1 as used in this unit differ
from the meaning as used in Unit 1?

(b) Two commonly used notations for the inverse or complement of A are A
and A’. The latter has the advantage that it is much easier for typists, print-
ers, and computers. (Have you ever tried to get a computer to print a bar
over a letter?) We will use A” for the complement of A. You may use either
notation in your work, but please do not mix notations in the same equa-
tion. Most engineers use + for OR and ¢ (or no symbol) for AND, and we
will follow this practice. An alternative notation, often used by
mathematicians, is \V for OR and A for AND.

(¢) Many different symbols are used for AND, OR, and INVERTER logic
blocks. Initially we will use

= for - for for
_} AND j:Di OR [> °" INVERTER

The shapes of these symbols conform to those commonly used in industrial
practice. We have added the + and e for clarity. These symbols point in
the direction of signal flow. This makes it easier to read the circuit diagrams
in comparison with the square or round symbols used in some books.

(d) Determine the output of each of the following gates:

(e) Determine the unspecified inputs to each of the following gates if the out-
puts are as shown:

o B o
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Study Section 2.3, Boolean Expressions and Truth Tables.

(a) How many variables does the following expression contain?
How many literals?

A’BC'D + AB + B'CD + D’

(b) For the following circuit,if A = B = 0and C = D = E = 1, indicate the out-
put of each gate (0 or 1) on the circuit diagram:

(c) Derive a Boolean expression for the circuit output. Then substitute A = B = 0
and C = D=E =1 into your expression and verify that the value of F
obtained in this way is the same as that obtained on the circuit diagram in (b).

(d) Write an expression for the output of the following circuit and complete
the truth table:

AB | A | AB | By

(e) When filling in the combinations of values for the variables on the left side
of a truth table, always list the combinations of 0’s and 1’s in binary order.
For example, for a three-variable truth table, the first row should be 000,
the next row 001, then 010, 011, 100, 101, 110, and 111. Write an expression
for the output of the following circuit and complete the truth table:

D ABC | B | A+B | C(A+B)
> B BN

(f) Draw a gate circuit which has an output
Z = [BC' + F(E + AD")]’

(Hint: Start with the innermost parentheses and draw the circuit for AD’ first.)
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4. Study Section 2.4, Basic Theorems.

(a) Prove each of the Theorems (2-4) through (2-8D) by showing that it is
valid for both X = 0 and X = 1.
(b) Determine the output of each of these gates:

(c) State which of the basic theorems was used in simplifying each of the fol-
lowing expressions:

(AB"+C)-0=0 AB+C)+1=1
(BC’+A)BC'+A)=BC"+A XY +2)+[X(Y'+2)] =1

X'+ YZ)(X' +YZ) =0 D'(E'+ F)+D'(E + F)=D'(E +F)

5. Study Section 2.5, Commutative, Associative, and Distributive Laws.

(a) State the associative law for OR.
(b) State the commutative law for AND.

(c) Simplify the following circuit by using the associative laws. Your answer
should require only two gates.

(d) For each gate determine the value of the unspecified input(s):

(e) Using a truth table, verify the distributive law, Equation (2-11).
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(f) Tllustrate the distributive laws, Equations (2-11) and (2-11D), using AND
and OR gates.

(g) Verify Equation (2-3) using the second distributive law.

(h) Show how the second distributive law can be used to factor RS + 7”.

Study Section 2.6, Simplification Theorems.
(a) By completing the truth table, prove that XY’ + Y =X + Y.

| Xy’ XY +Y | x+vY

- =0 0O|X

Y
0
1
0
1

(b) Which one of Theorems (2-12) through (2-14D) was applied to simplify
each of the following expressions? Identify X and Y in each case.

(A+ B)DE) + DE=A+ B+ DE
AB’ + AB’C’'D = AB’
(A”+B)(CD+E)+(A"+B)(CD+E) =A"+B

(A+BC'+ D'E)A+ DE)=A+ DE
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(c) Simplify the following circuit to a single gate:

A —

B_

C —
D —

U

(d) Work Problems 2.1,2.2,2.3, and 2.4.
7. Study Section 2.7, Multiplying Out and Factoring.

(a) Indicate which of the following expressions are in the product-of-sums
form, sum-of-products form, or neither:
AB' + D'EF’ + G
(A+B'C) A+ BC)

AB(C"+ D + E")(F' + G)

XY+ WX(X'+Z)+ A'B'C’
Your answer to this question should include one product-of-sums, one sum-
of-products, and two neither, not necessarily in that order.

(b) When multiplying out an expression, why should the second distributive
law be applied before the ordinary distributive law when possible?

(c) Factor as much as possible using the ordinary distributive law:

AD + B’CD + B’'DE

Now factor your result using the second distributive law to obtain a prod-
uct of sums.

(d) Work Problems 2.5,2.6, and 2.7.

8. Probably the most difficult part of the unit is using the second distributive law
for factoring or multiplying out an expression. If you have difficulty with
Problems 2.5 or 2.6, or you cannot work them gquickly, study the examples in
Section 2.7 again, and then work the following problems.

Multiply out:
(a) (B"+ D+ E)B +D+A)AE + ()
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(b) (A + C)(B + D)(C + D')(C + D)E

As usual, when we say multiply out, we do not mean to multiply out by brute
force, but rather to use the second distributive law whenever you can to cut
down on the amount of work required.

The answer to (a) should be of the following form: XX + XX + XX and (b) of the
form: XXX + XXXXX, where each X represents a single variable or its complement.

Now factor your answer to (a) to see that you can get back the original
expression.

Study Section 2.8, DeMorgan’s Laws.

Find the complement of each of the following expressions as indicated. In your
answer, the complement operation should be applied only to single variables.

(a) (ab’c’) =
(b) (@ +b+c+d) =
(©) (@' +be) =

d) (@b’ +cd) =

(e) [a(®” + c'd)]" =

Because (X’)’ = X, if you complement each of your answers to 10, you should
get back the original expression. Verify that this is true.

(a)
(b)
(©)
(d)
(e)

Giventhat F =a’b + b'c, F' =
Complete the following truth table and verify that your answer is correct:

a'b b'c a'b+bc (@ +b") b+ c) F'

—_—_ = =20 000|Y
- —_ 00 -==00|T

0 —~0—-~0=-0|n
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2.1

13.

14.
15.

16.

17.
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A fully simplified expression should have nothing complemented except the
individual variables. For example, F = (X + Y) (W + Z) is not a minimum prod-
uct of sums. Find the minimum product of sums for F.

Work Problems 2.8 and 2.9.
Find the dual of (M + N")P’.

Review the first 12 laws and theorems on page 55. Make sure that you can recog-
nize when to apply them even if an expression has been substituted for a variable.

Reread the objectives of this unit. If you are satisfied that you can meet these
objectives, take the readiness test.
[Note: You will be provided with a copy of the theorem sheet (page 55)
when you take the readiness test this time. However, by the end of Unit 3,
you should know all the theorems by memory.]

Boolean Algebra

Introduction

The basic mathematics needed for the study of the logic design of digital systems
is Boolean algebra. Boolean algebra has many other applications including set the-
ory and mathematical logic, but we will restrict ourselves to its application to
switching circuits in this text. Because all of the switching devices which we will use
are essentially two-state devices (such as a transistor with high or low output volt-
age), we will study the special case of Boolean algebra in which all of the variables
assume only one of two values. This two-valued Boolean algebra is often referred
to as switching algebra. George Boole developed Boolean algebra in 1847 and used
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it to solve problems in mathematical logic. Claude Shannon first applied Boolean
algebra to the design of switching circuits in 1939.

We will use a Boolean variable, such as X or ¥, to represent the input or output of
a switching circuit. We will assume that each of these variables can take on only two
different values. The symbols “0” and “1” are used to represent these two different
values. Thus, if X is a Boolean (switching) variable, then either X = 0 or X = 1.

The symbols “0” and “1” used in Boolean algebra do not have a numeric value;
instead they represent two different states in a logic circuit and are the two values
of a switching variable. In a logic gate circuit, 0 (usually) represents a range of low
voltages, and 1 represents a range of high voltages. In a switch circuit, 0 (usually)
represents an open switch, and 1 represents a closed circuit. In general, 0 and 1 can
be used to represent the two states in any binary-valued system.

Basic Operations

The basic operations of Boolean algebra are AND, OR, and complement (or inverse).
The complement of 0 is 1, and the complement of 1 is 0. Symbolically, we write

0=1 and 17=0
where the prime (") denotes complementation. If X is a switching variable,
X =1ifX=0 and X =0ifxX=1

An alternate name for complementation is inversion, and the electronic circuit
which forms the inverse of X is referred to as an inverter. Symbolically, we repre-

sent an inverter by

where the circle at the output indicates inversion. If a logic 0 corresponds to a low

voltage and a logic 1 corresponds to a high voltage, a low voltage at the inverter

input produces a high voltage at the output and vice versa. Complementation is

sometimes referred to as the NOT operation because X = 1 if X is not equal to 0.
The AND operation can be defined as follows:

0-0=0 0-1=0 1-0=0 1-1=1

where “-” denotes AND. (Although this looks like binary multiplication, it is not,
because 0 and 1 here are Boolean constants rather than binary numbers.) If we write
the Boolean expression C = A - B, then given the values of A and B, we can deter-
mine C from the following table:

C B

N E=E=1BN
- O-=0|Wl

=A-
0
0
0
1
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Note that C = 1 iff (if and only if) A and B are both 1, hence, the name AND oper-
ation. A logic gate which performs the AND operation is represented by

The dot symbol (-) is frequently omitted in a Boolean expression, and we will usu-
ally write AB instead of A- B. The AND operation is also referred to as logical (or
Boolean) multiplication.

The OR operation can be defined as follows:

0+0=0 0+1=1 1+0=1 1+1=1
where “ + ” denotes OR. If we write C = A + B, then given the values of A and B,

we can determine C from the following table:

AB C=A+B
00 0
01
10
11

1
1
1

Note that C = 1iff A or B (or both) is 1, hence, the name OR operation. This type of
OR operation is sometimes referred to as inclusive-OR. A logic gate which per-
forms the OR operation is represented by

The OR operation is also referred to as logical (or Boolean) addition. Electronic
circuits which realize inverters and AND and OR gates are described in
Appendix A.

Next, we will apply switching algebra to describe circuits containing switches. We
will label each switch with a variable. If switch X is open, then we will define the
value of X to be 0; if switch X is closed, then we will define the value of X to be 1.

X X =0 — switch open
o—e

X =1 — switch closed

Now consider a circuit composed of two switches in a series. We will define the
transmission between the terminals as 7' = 0 if there is an open circuit between the
terminals and T = 1 if there is a closed circuit between the terminals.

A B - ircui i
| S S ’ T =0 — open circuit between terminals 1 and 2

T =1 — closed circuit between terminals 1 and 2

Now we have a closed circuit between terminals 1 and 2 (7 = 1) iff (if and only if)
switch A is closed and switch B is closed. Stating this algebraically,

T=A-B
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Next consider a circuit composed of two switches in parallel.

In this case, we have a closed circuit between terminals 1 and 2 iff switch A is closed
or switch B is closed. Using the same convention for defining variables as above, an
equation which describes the behavior of this circuit is

T=A+B

Thus, switches in a series perform the AND operation and switches in parallel per-
form the OR operation.

2.3 Boolean Expressions and Truth Tables

Boolean expressions are formed by application of the basic operations to one or
more variables or constants. The simplest expressions consist of a single constant or
variable, such as 0, X, or Y’. More complicated expressions are formed by combining
two or more other expressions using AND or OR, or by complementing another
expression. Examples of expressions are

AB' + C (2-1)
[A(C + D)’ + BE 2-2)

Parentheses are added as needed to specify the order in which the operations are
performed. When parentheses are omitted, complementation is performed first fol-
lowed by AND and then OR. Thus in Expression (2-1), B” is formed first, then AB’,
and finally AB’ + C.

Each expression corresponds directly to a circuit of logic gates. Figure 2-1 gives
the circuits for Expressions (2-1) and (2-2).

FIGURE 2-1 A —] AB

Circuits for B_DOB_/ * - (AB’ + C)

Expressions (2-1)

and (2-2) (@)
c (c+D) ,
A(C+D A(C+ D))
D:D— O)ACD) p C ) -
A—] J [A(C + D)’ + BE

B —
E_
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An expression is evaluated by substituting a value of 0 or 1 for each variable. If
A=B=C=1andD = E = 0, the value of Expression (2-2) is

[A(C+D) +BE=[11+0)]"+1-0=[1(1)]"+0=0+0=0

Each appearance of a variable or its complement in an expression will be referred
to as a literal. Thus, the following expression, which has three variables, has 10 literals:
ab’c + a’b + a'bc’ + b'c’

When an expression is realized using logic gates, each literal in the expression cor-
responds to a gate input.

A truth table (also called a table of combinations) specifies the values of a
Boolean expression for every possible combination of values of the variables in the
expression. The name truth table comes from a similar table which is used in sym-
bolic logic to list the truth or falsity of a statement under all possible conditions. We
can use a truth table to specify the output values for a circuit of logic gates in
terms of the values of the input variables. The output of the circuit in Figure 2-2(a)
is F = A’ + B. Figure 2-2(b) shows a truth table which specifies the output of the
circuit for all possible combinations of values of the inputs A and B. The first two
columns list the four combinations of values of A and B, and the next column gives
the corresponding values of A’. The last column, which gives the values of A” + B, is
formed by ORing together corresponding values of A” and B in each row.

FIGURE 2-2
Two-Input Circuit & D
and Truth Table

AB | A |F=A+B
1

1
0
1

OO = =

(b)

Next, we will use a truth table to specify the value of Expression (2-1) for all possible
combinations of values of the variables A, B, and C. On the left side of Table 2-1, we list
the values of the variables A, B, and C. Because each of the three variables can assume
the value 0 or 1, there are 2 X 2 X 2 = 8 combinations of values of the variables. These
combinations are easily obtained by listing the binary numbers 000, 001, . .., 111. In the
next three columns of the truth table, we compute B’, AB’,and AB’ + C, respectively.

Two expressions are equal if they have the same value for every possible com-
bination of the variables. The expression (A + C)(B’ + C) is evaluated using the
last three columns of Table 2-1. Because it has the same value as AB” + C for all
eight combinations of values of the variables A, B, and C, we conclude

®
>
®

AB' + C A

(@]

B+ C A+ CO)B' + Q)
1 0

TABLE 2-1

A
0
0
0
0
1
1
1
1

- —200—==00|y
- O -0 -=0-=0 o)

S, m s 0= O+

OO - =00 ==
OO0 -~ = 000O0
—_ O = = O -0
O o JE GG o R
O o JE G G o, R
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AB"+C=(A+ C)B + C) (2-3)

If an expression has n variables, and each variable can have the value 0 or 1, the
number of different combinations of values of the variables is

2X2X2X .., =2
n times

Therefore, a truth table for an n-variable expression will have 2" rows.

Basic Theorems

The following basic laws and theorems of Boolean algebra involve only a single variable:
Operations with 0 and 1:

X+0=X (2-4) X-1=X (2-4D)

X+1=1 (2-5) X-0= (2-5D)
Idempotent laws

X+X=X (2-6) X-X=X (2-6D)
Involution law

X) =X 2-7)

Laws of complementarity

X+X =1 (2-8) X-X=0 (2-8D)

Each of these theorems is easily proved by showing that it is valid for both of the
possible values of X. For example, to prove X + X’ = 1, we observe that if

X=0, 04+40=0+1=1, andifxX=1, 14+1'=140=1

Any expression can be substituted for the variable X in these theorems. Thus,
by Theorem (2-5),

(AP’ + D)E+1=1
and by Theorem (2-8D),
(AB’ + D)(AB’ + D)’ = 0

We will illustrate some of the basic theorems with circuits of switches. As before,
0 will represent an open circuit or open switch, and 1 will represent a closed circuit
or closed switch. If two switches are both labeled with the variable A, this means that
both switches are open when A = 0 and both are closed when A = 1. Thus the circuit

.—AO/'O—AO/O—Q

can be replaced with a single switch:
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This illustrates the theorem A - A = A. Similarly,

which illustrates the theorem A + A = A. A switch in parallel with an open circuit is
equivalent to the switch alone

while a switch in parallel with a short circuit is equivalent to a short circuit.

If a switch is labeled A’, then it is open when A is closed and conversely. Hence,
A in parallel with A’ can be replaced with a closed circuit because one or the other
of the two switches is always closed.

Similarly, switch A in series with A” can be replaced with an open circuit (why?).

2.5 Commutative, Associative,
and Distributive Laws

Many of the laws of ordinary algebra, such as the commutative and associative laws,
also apply to Boolean algebra. The commutative laws for AND and OR, which fol-
low directly from the definitions of the AND and OR operations, are

XY=vx (2-9) X+Y=Y+X (29D)
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This means that the order in which the variables are written will not affect the result
of applying the AND and OR operations.
The associative laws also apply to AND and OR:

(XY)Z = X(YZ) = XYZ (2-10)
X+Y)+Z=X+(¥Y+2Z)=X+Y+2Z (2-10D)

When forming the AND (or OR) of three variables, the result is independent of
which pair of variables we associate together first, so parentheses can be omitted as
indicated in Equations (2-10) and (2-10D).

We will prove the associative law for AND by using a truth table (Table 2-2).
On the left side of the table, we list all combinations of values of the variables X,
Y, and Z. In the next two columns of the truth table, we compute XY and YZ for
each combination of values of X, ¥, and Z. Finally, we compute (XY)Z and X(YZ).
Because (XY)Z and X(YZ) are equal for all possible combinations of values of the
variables, we conclude that Equation (2-10) is valid.

TABLE 2-2
Proof of Associative
Law for AND

x
-<
N

(XY)z X(YZ)
0 0

- =2 000O0O|X
_\Aoo_\—\OO~<
—\O—'O—iO—\ON

- =000 O0OCO0OOoO
00O -~00O0
OO0 O0OO0OO0OOo
OO0 O0OO0OO0OOo

Figure 2-3 illustrates the associative laws using AND and OR gates. In Figure 2-3(a)
two two-input AND gates are replaced with a single three-input AND gate. Similarly,
in Figure 2-3(b) two two-input OR gates are replaced with a single three-input OR gate.

FIGURE 2-3 4 —] N
Associative Laws 5 —| ° ] 3— = B—}

for AND and OR ¢

(AB) C=ABC
(@)

A A
B + - B
C C

(A+B)+C=A+B+C
(b)

When two or more variables are ANDed together, the value of the result will be
1 iff all of the variables have the value 1. If any of the variables have the value 0, the
result of the AND operation will be 0. For example,

XYyz=1iffX=Y=72=1
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When two or more variables are ORed together, the value of the result will be 1
if any of the variables have the value 1. The result of the OR operation will be 0 iff
all of the variables have the value 0. For example,

X+Y+Z=0iff X=Y=Z=0
Using a truth table, it is easy to show that the distributive law is valid:
X(Y+Z)=XY + XZ (2-11)

In addition to the ordinary distributive law, a second distributive law is valid for
Boolean algebra but not for ordinary algebra:

X+YZ=X+Y)X+2Z) (2-11D)
Proof of the second distributive law follows:

X+YVX+2)=XX+2Z)+YX+Z)=XX+XZ+YX+YZ

(by (2-11))

=X+XZ+XY+YZ=X-1+XZ+XY+YZ
(by (2-6D) and (2-4D))

=XA+Z+Y)+YZ=X-1+YZ=X+YZ

(by (2-11), (2-5), and (2-4D))
The ordinary distributive law states that the AND operation distributes over OR,
while the second distributive law states that OR distributes over AND. This second
law is very useful in manipulating Boolean expressions. In particular, an expression

like A + BC, which cannot be factored in ordinary algebra, is easily factored using the
second distributive law:

A+ BC=(A+B)A+O)

2.6 Simplification Theorems

The following theorems are useful in simplifying Boolean expressions:

XY+ XY =X (2-12) X+YV)(X+Y)=X (2-12D)
X+Xy=X (2-13) XX+Y)=X (2-13D)
X+Y)Y=XY (2-14) XY +Y=X+Y (2-14D)

In each case, one expression can be replaced by a simpler one. Because each
expression corresponds to a circuit of logic gates, simplifying an expression leads to
simplifying the corresponding logic circuit.
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Each of the preceding theorems can be proved by using a truth table, or they can
be proved algebraically starting with the basic theorems.
Proof of (2-13): X+XyY=X-1+Xy=X1+v)=X-1=X
Proof of (2-13D): X(X+Y)=XX+XY=X+XY=X
(by (2-6D) and (2-13))
Proof of (2-14D): Y+ XY = +X)Y+Y)=F+X)1=Y+X
(by (2-11 D) and (2-8))

The proof of the remaining theorems is left as an exercise.
We will illustrate Theorem (2-14D), using switches. Consider the following circuit:

Its transmission is 7 = Y + XY’ because there is a closed circuit between the termi-
nals if switch Y is closed or switch X is closed and switch Y’ is closed. The following
circuit is equivalent because if Y is closed (¥ = 1) both circuits have a transmission
of 1;if Yis open (Y’ = 1) both circuits have a transmission of X.

The following example illustrates simplification of a logic gate circuit using one
of the theorems. In Figure 2-4, the output of circuit (a) is

F=A(A"+B)

By Theorem (2-14), the expression for F simplifies to AB. Therefore, circuit (a) can
be replaced with the equivalent circuit (b).

A
B . F . F
A— B—]

(@ (b)

Any expressions can be substituted for X and Y in the theorems.
Simplify Z = A’BC + A’

This expression has the same form as (2-13) if we let X = A” and Y = BC.
Therefore, the expression simplifies to Z = X + XY = X = A”.
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Simplify =~ Z=[A+ B’C+ D + EF|[A + B'C + (D + EF)’]
—_— —_——

Substituting:Z=[ X + Y ][ X + Y ]
Then, by (2-12D), the expression reduces to

Z=X=A+BC

Simplify Z=(AB + C) (B'D + C’'E’) + (AB + C)’
—_— — —_—

Substituting: Z = Y’ X + Y

By, (2-14D): Z=X+Y=B'D + C'’E' + (AB+ C)’

Note that in this example we let ¥ = (AB + C)’ rather than (AB + C) in order to
match the form of (2-14D).

Multiplying Out and Factoring

The two distributive laws are used to multiply out an expression to obtain a sum-
of-products (SOP) form. An expression is said to be in sum-of-products form when
all products are the products of single variables. This form is the end result when
an expression is fully multiplied out. It is usually easy to recognize a sum-of-prod-
ucts expression because it consists of a sum of product terms:

AB’ + CD'E + AC'E’ (2-15)

However, in degenerate cases, one or more of the product terms may consist of a
single variable. For example,

ABC’ + DEFG + H (2-16)
and
A+B +C+DE (2-17)
are still considered to be in sum-of-products form. The expression
(A + B)CD + EF

is not in sum-of-products form because the A + B term enters into a product but is
not a single variable.

When multiplying out an expression, apply the second distributive law first when
possible. For example, to multiply out (A + BC)(A + D + E) let

X=A, Y = BC, Z=D+E
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Then
X+Y)X+Z)=X+YZ=A+BC(D+E)=A+ BCD + BCE

Of course, the same result could be obtained the hard way by multiplying out the
original expression completely and then eliminating redundant terms:

(A+BC)YA+D+E)=A+ AD + AE + ABC + BCD + BCE
=A(l+ D+ E+ BC) + BCD + BCE
=A + BCD + BCE

You will save yourself a lot of time if you learn to apply the second distributive law
instead of doing the problem the hard way.

Both distributive laws can be used to factor an expression to obtain a product-
of-sums form. An expression is in product-of-sums (POS) form when all sums are the
sums of single variables. It is usually easy to recognize a product-of-sums expression
since it consists of a product of sum terms:

(A+B)YC+D +E)YA+C +E) (2-18)

However, in degenerate cases, one or more of the sum terms may consist of a single
variable. For example,

(A+B)(C+D+E)F (2-19)
and
AB’C(D’ + E) (2-20)

are still considered to be in product-of-sums form, but (A + B)(C + D) + EF is not.
An expression is fully factored iff it is in product-of-sums form. Any expression not
in this form can be factored further.

The following examples illustrate how to factor using the second distributive law:

Factor A + B’CD. This is of the form X + YZ where X = A, Y = B’, and Z = CD, so
A+BCD=X+Y)X+Z)=(A+B)A+CD)
A + CD can be factored again using the second distributive law, so

A+BCD=(A+B)A+C)A+D)

Factor AB” + C’D.

AB’ + C'D = (AB’ + C')(AB’ + D) <« note how X + YZ = (X + Y)(X + Z) was
applied here

=(A+ C)B + C')A + D)(B" + D) « the second distributive law was applied
again to each term
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—— Factor C'D + C’'E’ + G'H.
Example 3
CD+CE +GH=C(D+E)+GH « first apply the ordinary distribu-
tive law, XY + XZ = X(Y + Z)
=(C"+ G’H)(D + E' + G’H) « then apply the second distribu-
tive law

=(C"+G)C"+H)D+ E + G)D + E"+ H) « now identify X, ¥, and Z in each
expression and complete the
factoring

As in Example 3, the ordinary distributive law should be applied before the second
law when factoring an expression.

A sum-of-products expression can always be realized directly by one or more AND
gates feeding a single OR gate at the circuit output. Figure 2-5 shows the circuits for
Equations (2-15) and (2-17). Inverters required to generate the complemented vari-
ables have been omitted.

A product-of-sums expression can always be realized directly by one or more
OR gates feeding a single AND gate at the circuit output. Figure 2-6 shows the
circuits for Equations (2-18) and (2-20). Inverters required to generate the comple-
ments have been omitted.

The circuits shown in Figures 2-5 and 2-6 are often referred to as two-level cir-
cuits because they have a maximum of two gates in series between an input and the
circuit output.

FIGURE 2-5 A —]
Circuits for SO
Equations (2-15) - D’ —] .
and (2-17) —l . r
E —
A —]
C'— o
E’_

FIGURE 2-6 A
Circuits for B
Equations (2-18 A —
a ( ) Cc B — R )

DRES

and (2-20) D

3:}} D=

E

A
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2.8 DeMorgan’s Laws

The inverse or complement of any Boolean expression can easily be found by suc-
cessively applying the following theorems, which are frequently referred to as
DeMorgan’s laws:

X+Y)y=XY (2-21)
XYy =X"+Y (2-22)
We will verify these laws using a truth table:

XY | XY | X+Y | X+Y) | XY | XY | (XY) | X+Y

00 11 0 1 1 0 1 1
01 10 1 0 0 0 1 1
10 01 1 0 0 0 1 1
11 00 1 0 0 1 0 0
DeMorgan’s laws are easily generalized to n variables:
(Xl + X2 + X3 + ...+ Xn), = X]' Xz/ X3, .. 'Xn, (2-23)
XXX ... X) =X/ +X +X)/ +...+X/ (2-24)

For example, for n = 3,
X+ X+ X3) = (X + X)Xy = XX, 'Xy

Referring to the OR operation as the logical sum and the AND operation as logical
product, DeMorgan’s laws can be stated as

The complement of the product is the sum of the complements.
The complement of the sum is the product of the complements.

To form the complement of an expression containing both OR and AND opera-
tions, DeMorgan’s laws are applied alternately.

—— To find the complement of (A" + B)C’, first apply (2-22) and then (2-21).

Example 1
[(A” + B)C) = (A’ + B) + (C')’ =AB’ + C
— [(AB’ + C)D’ + E]’ = [(AB’ + C)D'|'E’  (by (2-21))
Example 2 = [(AB’ + C)’ + D]JE’ (by (2-22))

— [(AB’)Y’C’ + DIE’  (by (2-21))
[(A" + B)C' + DE’ (by (222)) (2-25)

Note that in the final expressions, the complement operation is applied only to sin-
gle variables.
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The inverse of F = A’B + AB’ is
F' = (A’B + AB’)’ = (A’B)'(AB’)’ = (A + B’)(A’ + B)
=AA"+ AB + B’A’ + BB’ = A’B’ + AB
We will verify that this result is correct by constructing a truth table for F and F”:
AB | AB | AB" | F=AB+AB | AB | AB | F=AB +AB

00 0 0 0 1 0 1
01 1 0 1 0 0 0
10 0 1 1 0 0 0
11 0 0 0 0 1 1

In the table, note that for every combination of values of A and B for which F = 0,
F’ = 1;and whenever F = 1, F' = 0.

Given a Boolean expression, the dual is formed by replacing AND with OR, OR
with AND, 0 with 1, and 1 with 0. Variables and complements are left unchanged.
The dual of AND is OR and the dual of OR is AND:

XYZ..)P=X+Y+Z+... (X+Y+Z+..)’=XyZ... (2-26)

The dual of an expression may be found by complementing the entire expression and
then complementing each individual variable. For example, to find the dual of AB” + C,

(AB’ + C) = (AB’)’'C’ = (A’ + B)C’, so (AB'+C)’=(A+B)C

The laws and theorems of Boolean algebra on page 55 are listed in dual pairs. For
example, Theorem 11 is (X + Y")Y = XY and its dual is XY” + Y = X + Y (Theorem 11D).

Problems

2.1 Prove the following theorems algebraically:
(a) XX’ +Y)=XY (b)) X+Xy=X
(c) XY +XY' =X (d A+B)A+B)=A

2.2 llustrate the following theorems using circuits of switches:
(a) X+XY=X ®)X+YZ=X+Y)(X+2Z)
In each case, explain why the circuits are equivalent.

2.3 Simplify each of the following expressions by applying one of the theorems. State
the theorem used (see page 55).
(a) X'Y'Z+ (X'YZY (b) (AB’ + CD)(B’E + CD)
(c) ACF + AC'F (d) A(C+D'B) + A’
() (A'B+ C+D)AB+D)  (f) (A+BC)+ (DE + F)(A + BC)

2.4 For each of the following circuits, find the output and design a simpler circuit hav-
ing the same output. (Hint: Find the circuit output by first finding the output of each
gate, going from left to right, and simplifying as you go.)
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(b)

Multiply out and simplify to obtain a sum of products:
(a) (A + B)(C + B)(D’ + B)(ACD’ + E)
(b) (A’ + B+ C')A’ + C’' + D)(B + D)

Factor each of the following expressions to obtain a product of sums:

(a) AB + C'D’ (b) WX + WY’X + ZYX

(c) A’BC + EF + DEF’ (d) XYZ + W'Z+ XQ'Z

(e) ACD’ + C'D’ + A’C (f) A+ BC + DE

(The answer to (f) should be the product of four terms, each a sum of three variables.)
Draw a circuit that uses only one AND gate and one OR gate to realize each of the
following functions:

() (A+B+C+D)YA+B+C+E)A+B+C+F)

(b) WXYZ + VXYZ + UXYZ

Simplify the following expressions to a minimum sum of products.
(a) [(AB) + C'D) (b) [A +B(C"+ D) (c) (A +B)C)Y(A+ B)(C+ AY

Find F and G and simplify:
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2.10 Illustrate the following equations using circuits of switches:
(a) XY + XY’ =X (b) (X + Y)Y =XY
() X+XZY=X+YZ (d) A+B)C+(A+B)C =A+B

() X+V)(X+2Z)=X+YZ (f)XX+Y)=X

2.11 Simplify each of the following expressions by applying one of the theorems. State
the theorem used.
(a) A"+ B+ O)(A"+ B +CY (b) AB(C" + D) + B(C' + D)
(c) AB+ (C' + D)(ABY (d) (A’BF + CD")(A’BF + CEG)
(e) [AB"+ (C + D) + E'F|(C + D) (f)y A(B+ CO)(D'E+F)Y +(D'E+F)

2.12 Simplify each of the following expressions by applying one of the theorems. State
the theorem used.
(a) X+Y2)+(X+YZ)y
(b) [W+ X'(Y + 2)[W + X(Y + Z)]
(c) (VW+UXY(UX+Y+ Z+ VW)
(d) (UV + WX)(UV' + WX +Y?Z)
) W+X)(Y+Z)+(W+X)(Y+2Z)
& V+U+WW+X)+Y+UZ|+[(W+X)+UZ +Y]

2.13 For each of the following circuits, find the output and design a simpler circuit that
has the same output. (Hint: Find the circuit output by first finding the output of each
gate, going from left to right, and simplifying as you go).

(a) B

(b)

(©]
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(d

2.14 Draw a circuit that uses only one AND gate and one OR gate to realize each of the
following functions:
(a) ABCF + ACEF + ACDF
b)) (V+W+Y+Z)WU+W+Y+Z)W+X+Y+7Z)

2.15 Use only DeMorgan’s relationships and Involution to find the complements of the
following functions:
(a) AA,B,C,D) =[A + (BCD)'|[(AD) + B(C" + A)]
(b) (A,B,C,D)=AB'C+ (A" + B + D)(ABD’ + B’)

2.16 Using just the definition of the dual of a Boolean algebra expression, find the duals
of the following expressions:
(a) f(A,B,C,D)=[A + (BCD)][(AD)" + B(C" + A)]
(b) f(A,B,C,D)=AB'C+ (A" + B+ D)(ABD’ + B’)

2.17 For the following switching circuit, find the logic function expression describing the cir-
cuit by the three methods indicated, simplify each expression, and show they are equal.
(a) subdividing it into series and parallel connections of subcircuits until single
switches are obtained
(b) finding all paths through the circuit (sometimes called zie sets), forming an AND
term for each path and ORing the AND terms together
(c) finding all ways of breaking all paths through the circuit (sometimes called cut
sets), forming an OR term for each cut set and ANDing the OR terms together.

2.18 For each of the following Boolean (or switching) algebra expressions, indicate
which, if any, of the following terms describe the expression: product term, sum-of-
products, sum term, and product-of-sums. (More than one may apply.)

(a) XY (b) XY +YZ
(o) X+ V(WX + 2) (d) X+ Z
) X +YY W+ Z2)(X+Y +2Z)
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2.19

2.20

2.21

2.22

2.23

2.24

Downloaded From : www.EasyEn¢

Construct a gate circuit using AND, OR, and NOT gates that corresponds one to
one with the following switching algebra expression. Assume that inputs are avail-
able only in uncomplemented form. (Do not change the expression.)

(WX + YV)[(W + Z) + XYZ)]

For the following switch circuit:

(a) derive the switching algebra expression that corresponds one to one with the
switch circuit.

(b) derive an equivalent switch circuit with a structure consisting of a parallel
connection of groups of switches connected in series. (Use 9 switches.)

(c) derive an equivalent switch circuit with a structure consisting of a series
connection of groups of switches connected in parallel. (Use 6 switches.)

!
C
T g
—/0— B —
A C’
L o o e

In the following circuit, F = (A" + B)C. Give a truth table for G so that H is as spec-
ified in its truth table. If G can be either 0 or 1 for some input combination, leave
its value unspecified.

o A B C|H
F
lg,: 0 0 01O
0 0 1 1
1 0 1 0|1
g — 0 1 1 1
—] G 1 0 010
¢ 10 1|1
1 1 (V]
1 1 1 1
Factor each of the following expressions to obtain a product of sums:
(a) A’B’+ A’CD + A’'DFE’ (b) HI' +JK
(c) AABC+ A’B’C + CD’ (d) A’'B’ + (CD’ + E)
(e) A’B'C + B'CD’ + EF ) WXY+ WX + WY
Factor each of the following expressions to obtain a product of sums:

(a) W+ UYV (b) TW+ UY' +V
(c) A’B'C + B'CD’ + B'E’ (d) ABC + ADE’ + ABF’

Simplify the following expressions to a minimum sum of products. Only individual
variables should be complemented.

(a) [(XY) + (X' + Y)'Z] (b) (X + (Y(Z + WYY

(c) [(A”+ BY +(A’B'CY + C'D] (d) (A+ B)CD + (A + BY
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2.25 For each of the following functions find a sum-of-products expression for F’.
(a) F(P,O,R,S)=(R"+ PQO)S
b)) FW,X,Y,Z2)=X+YZ(W+ X')
(¢) F(A,B,C,D)=A"+ B’ + ACD

2.26 Find F, G, and H, and simplify:

@ 2%}%% i

P ey

Cc

=~
© ) D—MH
PRI

2.27 Draw a circuit that uses two OR gates and two AND gates to realize the following
function:

(d)

F=(V+W+X)(V+X+Y)V+2Z)

2.28 Draw a circuit to realize the function:
F =ABC + A’'BC + AB’C + ABC’

(a) using one OR gate and three AND gates. The AND gates should have
two inputs.

(b) using two OR gates and two AND gates. All of the gates should have
two inputs.

2.29 Prove the following equations using truth tables:
A X+ VX +2)=XZ+XY
O X+VNY+2)H)X +2)=X+Y)X + 2)
() XY+ YZ+XZ=XY+XZ
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(d) (A+C)Y(AB+ (C)=AB+ AC’
(e) WXY+WZ=(W +2Z)(W+ XY)
(Note: Parts (a), (b), and (c) are theorems that will be introduced in Unit 3.)

2.30 Show that the following two gate circuits realize the same function.

e LT
T)w

Po—
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Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

1. X+0=X 1D. X-1=X

2.X+1=1 2D. X-0=0

Idempotent laws:

3.X+X=X 3D. X- X=X

Involution law:

4. (XY =X

Laws of complementarity:

50 X+X =1 SD. X-X' =0

Commutative laws:

6. X+Y=Y+X 6D. XY =YX

Associative laws:

7 X+Y)+Z=X+ (Y +Z) 7D. (XY)Z = X(YZ) = XYZ
=X+Y+2Z

Distributive laws:

8. X(Y+2Z2)=XY+XZ 8D. X+YZ=X+Y)X+Z)

Simplification theorems:

9. XY+ XY =X . X+NX+Y)=X

10. X+ XY=X 10D. XX +Y)=X

11. X+ Y)Y =XY 11D. XYY +Y=X+Y

DeMorgan’s laws:

12. X+Y+Z+..)=XY7Z... 12D. (XYZ..) =X +Y +2Z +...

Duality:

13.(X+Y+Z+..)P=XYZ... 13D. (XYZ..)P=X+Y+Z+...

Theorem for multiplying out and factoring:

4. X+VX'+2)=XZ+X'Y 14D. XY+ XZ=X+2Z2)(X'+7Y)

Consensus theorem:
15. XY+ YZ+X'Z=XY+X'Z 15D. X+ Y)Y+ 2Z2)(X +2)
=X+Y)X' +2)
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Objectives

When you complete this unit, you should know from memory and be able to use
any of the laws and theorems of Boolean algebra listed at the end of Unit 2.
Specifically, you should be able to

1. Apply these laws and theorems to the manipulation of algebraic expres-
sions including:
a. Simplifying an expression.
b. Finding the complement of an expression.
¢. Multiplying out and factoring an expression.

2. Prove any of the theorems using a truth table or give an algebraic proof
if appropriate.

3. Define the exclusive-OR and equivalence operations. State, prove, and use
the basic theorems that concern these operations.

4. Use the consensus theorem to delete terms from and add terms to a
switching expression.

5. Given an equation, prove algebraically that it is valid or show that it is
not valid.

56
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Study Guide

1. Study Section 3.1, Multiplying Out and Factoring Expressions.

(a)

(b)

(©)

(d)
(e)

List three laws or theorems which are useful when multiplying out or factor-
ing expressions.

Use Equation (3-3) to factor each of the following:
ab'c + bd =
abc + (ab)'d =

In the following example, first group the terms so that (3-2) can be applied
two times.

Fi=(x+y +20W +x +y)w+x+y)w +y+7)

After applying (3-2), apply (3-3) and then finish multiplying out by using
(3-1).

If we did not use (3-2) and (3-3) and used only (3-1) on the original F;
expression, we would generate many more terms:
Fi=Wx+wy +wz+xl+xy +x'z+xy+ ypd+yz)
(wwl+wx+wy +wy+xy+ yw+wz +xz' +y'z')
=Wx+wxy +wxz+- - +yzy'7)

49 terms 1n all

This is obviously a very inefficient way to proceed! The moral to this story
is to first group the terms and apply (3-2) and (3-3) where possible.

Work Programmed Exercise 3.1. Then work Problem 3.6, being careful not
to introduce any unnecessary terms in the process.

In Unit 2 you learned how to factor a Boolean expression, using the two
distributive laws. In addition, this unit introduced use of the theorem

XY+XZ=(X+Z)X +7)

in the factoring process. Careful choice of the order in which these laws
and theorems are applied may cut down the amount of work required to
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factor an expression. When factoring, it is best to apply Equation (3-1)
first, using as X the variable or variables which appear most frequently.
Then Equations (3-2) and (3-3) can be applied in either order, depending
on circumstances.

(f) Work Programmed Exercise 3.2. Then work Problem 3.7.

2. Checking your answers:

A good way to partially check your answers for correctness is to substitute 0’s
or 1’s for some of the variables. For example, if we substitute A = 1 in the first
and last expression in Equation (3-5), we get

1-C+0-BD'+0-BE+0-C'DE=(1+B+ C)(1+ B+ D)
-(1+B+E)1+D' +E)0+C)
C=1-1-1-1-Cv

Similarly, substituting A = 0, B = 0 we get
0+0+0+C'DE=0+C)O0O+ D)0+ E)D +E)1+C)
=C'DE v/
Verify that the result is also correct when A = 0 and B = 1.

3. The method which you use to get your answer is very important in this
unit. If it takes you two pages of algebra and one hour of time to work a
problem that can be solved in 10 minutes with three lines of work, you have
not learned the material in this unit! Even if you get the correct answer,
your work is not satisfactory if you worked the problem by an excessively
long and time-consuming method. It is important that you learn to solve
simple problems in a simple manner—otherwise, when you are asked to
solve a complex problem, you will get bogged down and never get the
answer. When you are given a problem to solve, do not just plunge in, but
first ask yourself, “What is the easiest way to work this problem?” For
example, when you are asked to multiply out an expression, do not just mul-
tiply it out by brute force, term by term. Instead, ask yourself, “How can I
group the terms and which theorems should I apply first in order to reduce
the amount of work?” (See Study Guide Part 1.) After you have worked out
Problems 3.6 and 3.7, compare your solutions with those in the solution
book. If your solution required substantially more work than the one in the
solution book, rework the problem and try to get the answer in a more
straightforward manner.
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Study Section 3.2, Exclusive-OR and Equivalence Operations.

(a) Prove Theorems (3-8) through (3-13). You should be able to prove these
both algebraically and by using a truth table.

(b) Show that (xy’ + x'y)’ = xy + x'y’. Memorize this result.

(¢) Prove Theorem (3-15).

(d) Show that (x=0) = x’, (x=x) = 1,and (x=y)' = (x=)).

(e) Express (x=y)’ in terms of exclusive OR.

(f) Work Problems 3.8 and 3.9.

Study Section 3.3, The Consensus Theorem. The consensus theorem is an impor-
tant method for simplifying switching functions.

(a) In each of the following expressions, find the consensus term and
eliminate it:
abc'd + a'be + bc'de
(@ +b+c)a+d)b+c+d)
ab'c + a'bd + bed' + a'bc

(b) Eliminate two terms from the following expression by applying the con-
sensus theorem:

A'B'C+ BC'D'+ A'CD + AB'D' + BCD + AC'D’

(Hint: First, compare the first term with each of the remaining terms to
see if a consensus exists, then compare the second term with each of the
remaining terms, etc.)
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(c) Study the example given in Equations (3-22) and (3-23) carefully. Now let
us start with the four-term form of the expression (Equation 3-22):

A'C'D + A'BD + ABC + ACD’

Can this be reduced directly to three terms by the application of the con-
sensus theorem? Before we can reduce this expression, we must add anoth-
er term. Which term can be added by applying the consensus theorem?

Add this term, and then reduce the expression to three terms. After this
reduction, can the term which was added be removed? Why not?

(d) Eliminate two terms from the following expression by applying the dual
consensus theorem:

(@ +c +d)a +b+c)a+b+d)a +b+d)(b+c +d)
Use brackets to indicate how you formed the consensus terms. (Hint: First,
find the consensus of the first two terms and eliminate it.)

(e) Derive Theorem (3-3) by using the consensus theorem.

(f) Work Programmed Exercise 3.3. Then work Problem 3.10.
6. Study Section 3.4, Algebraic Simplification of Switching Expressions.

(a) What theorems are used for:
Combining terms?

Eliminating terms?
Eliminating literals?

Adding redundant terms?
Factoring or multiplying out?

(b) Note that in the example of Equation (3-27), the redundant term WZ'
was added and then was eliminated later after it had been used to
eliminate another term. Why was it possible to eliminate WZ' in this
example?
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If a term has been added by the consensus theorem, it may not always
be possible to eliminate the term later by the consensus theorem. Why?

(¢) You will need considerable practice to develop skill in simplifying switching
expressions. Work through Programmed Exercises 3.4 and 3.5.
(d) Work Problem 3.11.
(e) When simplifying an expression using Boolean algebra, two frequently
asked questions are
(1) Where do I begin?
(2) How do I know when I am finished?
In answer to (1), it is generally best to try simple techniques such as combining
terms or eliminating terms and literals before trying more complicated things such
as using the consensus theorem or adding redundant terms. Question (2) is gener-
ally difficult to answer because it may be impossible to simplify some expressions
without first adding redundant terms. We will usually tell you how many terms to
expect in the minimum solution so that you will not have to waste time trying to
simplify an expression which is already minimized. In Units 5 and 6, you will learn
systematic techniques which will guarantee finding the minimum solution.

Study Section 3.5, Proving Validity of an Equation.

(a) When attempting to prove that an equation is valid, is it permissible to add
the same expression to both sides? Explain.

(b) Work Problem 3.12.

(c) Show that (3-33) and (3-34) are true by considering both x = 0 and x = 1.

(d) Giventhata'(b +d') = a'(b + e'),the following “proof” shows that d = e:
a(b+d)=a®d+e)
a+bd=a+be
b'd=D>b'e
d=e

State two things that are wrong with the “proof.” Give a set of values for
a, b, d, and e that demonstrates that the result is incorrect.

Reread the objectives of this unit. When you take the readiness test, you will
be expected to know from memory the laws and theorems listed at the end of
Unit 2. Where appropriate, you should know them “forward and backward”;
that is, given either side of the equation, you should be able to supply the
other. Test yourself to see if you can do this. When you are satisfied that you
can meet the objectives, take the readiness test.
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In this unit we continue our study of Boolean algebra to learn additional methods
for manipulating Boolean expressions. We introduce another theorem for multi-
plying out and factoring that facilitates conversion between sum-of-products and
product-of-sums expressions. These algebraic manipulations allow us to realize a
switching function in a variety of forms. The exclusive-OR and equivalence opera-
tions are introduced along with examples of their use. The consensus theorem pro-
vides a useful method for simplifying an expression. Then methods for algebraic
simplification are reviewed and summarized. The unit concludes with methods for
proving the validity of an equation.

3.1 Multiplying Out and Factoring Expressions

Given an expression in product-of-sums form, the corresponding sum-of-prod-
ucts expression can be obtained by multiplying out, using the two distributive
laws:

X(Y+Z)=XY+ XZ (3-1)
X+Y)X+2Z)=X+YZ (3-2)

In addition, the following theorem is very useful for factoring and multiplying out:
X+Y)X +Z)=XZ+X'Y (3-3)

Note that the variable that is paired with X on one side of the equation is paired with
X' on the other side, and vice versa.
Proof:
IfX=0,3-3)reducestoY(1+Z)=0+1-Y or Y=Y
IfX=13-3)reducesto(1+Y)Z=Z+0-Y or Z=Z.
Because the equation is valid for both X = 0 and X = 1, it is always valid.
The following example illustrates the use of Theorem (3-3) for factoring:

AB+A'C=(A+ C)A' +B)

62
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Note that the theorem can be applied when we have two terms, one which contains
a variable and another which contains its complement.

Theorem (3-3) is very useful for multiplying out expressions. In the following
example, we can apply (3-3) because one factor contains the variable Q, and the
other factor contains Q’.

(0 + AB)(C'D + Q') = QC'D + Q'AB’

If we simply multiplied out by using the distributive law, we would get four terms
instead of two:

(Q + AB')(C'D + Q') = QC'D + QQ' + AB'C'D + AB'Q’

Because the term AB'C’'D is difficult to eliminate, it is much better to use (3-3)
instead of the distributive law.

In general, when we multiply out an expression, we should use (3-3) along with
(3-1) and (3-2). To avoid generating unnecessary terms when multiplying out, (3-2)
and (3-3) should generally be applied before (3-1), and terms should be grouped to
expedite their application.

Tmp[e (A\—i_—/B+C’)(/L—_F/B—FD)(A+B+E)(A+D;L%’+C)
=(A+B+CD)A+B+E)AC+ A (D' + E)]
=(A+ B+ CDE)AC+ A'D' + A'E)
=AC + ABC+ A'BD' + A'BE + A'C'DE (3-4)
What theorem was used to eliminate ABC? (Hint: let X = AC.)
In this example, if the ordinary distributive law (3-1) had been used to multiply

out the expression by brute force, 162 terms would have been generated, and 158 of
these terms would then have to be eliminated.

The same theorems that are useful for multiplying out expressions are useful for
factoring. By repeatedly applying (3-1), (3-2), and (3-3), any expression can be con-
verted to a product-of-sums form.

— AC + A'BD' + A'BE + A'C'DE

xample o _ R '

Factoring =AC + A'(BD' + BE + C'DE)
XZ X Y

=(A+ BD' + BE + C'DE)(A’ + C)
=[A+ C'DE + B(D' + E)|(A’ + C)
X Y Z
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—(A+B+ CDE)A+ €DE+ D' + E) A" + C)
—(A+B+C)YA+B+D)A+B+E)NA+D +E)A +C) (35

This is the same expression we started with in (3-4).

3.2 Exclusive-OR and Equivalence Operations

The exclusive-OR operation (®) is defined as follows:

0®0=0 0®1=1
1®0=1 1®1=0

The truth table for X ® Y is

XY X®Y
00 0
01 1
10 1
11 0

From this table, we can see that X @ Y =11iff X =1 or Y = 1, but not both. The
ordinary OR operation, which we have previously defined, is sometimes called
inclusive OR because X + Y=1iff X =1 or Y = 1, or both.

Exclusive OR can be expressed in terms of AND and OR. Because X ©® Y =1
iff XisOand Yis1or Xis 1 and Yis 0, we can write

X®Y=XY+ XY (3-6)

The first term in (3-6) is 1 if X = 0 and Y = 1; the second term is 1 if X = 1 and

Y = 0. Alternatively, we can derive Equation (3-6) by observing that X ® Y = 1 iff
X=1orY =1and X and Y are not both 1. Thus,

XOY=X+Y)XY)=X+Y)X +Y)=XY+ XY (3-7)

In (3-7), note that (X'Y)’ = 1if X and Y are not both 1.
We will use the following symbol for an exclusive-OR gate:

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Boolean Algebra (Continued) 65

The following theorems apply to exclusive OR:

X®0=X (3-8)
X®1=X (3-9)
X®X=0 (3-10)
XoXx =1 (3-11)
X®Y =Y ® X (commutative law) (3-12)
XPY)®Z=XD(YDZ)=X®YD Z (associative law) (3-13)
X(Y® Z) = XY ® XZ (distributive law) (3-14)
(X®Y) =XOY =X OY=XY+XY (3-15)

Any of these theorems can be proved by using a truth table or by replacing X ® Y
with one of the equivalent expressions from Equation (3-7). Proof of the distribu-
tive law follows:

XY®XZ=XY(XZ) +(XY)XZ=XY(X' +Z')+ (X +Y)XZ
=XYZ' +XY'Z
=XYZ' +YZ)=X(Y®DZ)
The equivalence operation (=) is defined by
0=0)=1 0=1)=0 (3-16)
(1=0)=0 1=1)=1
The truth table for X =Y'is

From the definition of equivalence, we see that (X=Y) =1 iff X = Y. Because
(X=Y)=1iff X=Y =1o0r X =Y =0, we can write

(X=Y)=XY+ XY (3-17)
Equivalence is the complement of exclusive-OR:
X2Y)=XY+XY)=X+Y)X +Y)
=XY+XY =(X=Y) (3-18)

Just as for exclusive-OR, the equivalence operation is commutative and associative.
We will use the following symbol for an equivalence gate:

X_
Y_

= —X=Y
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Because equivalence is the complement of exclusive-OR, an alternate symbol for
the equivalence gate is an exclusive-OR gate with a complemented output:

X
Y(x@yy:(xsy)

The equivalence gate is also called an exclusive-NOR gate.

In order to simplify an expression which contains AND and OR as well as
exclusive OR and equivalence, it is usually desirable to first apply (3-6) and (3-17)
to eliminate the @ and = operations. As an example, we will simplify

F=(A'B=C) + (B® AC")
By (3-6) and (3-17),
F=[(A'B)C + (A'B)'C'] + [B'(AC") + B(AC")"]
=A'BC+ (A+B')C'+AB'C’' + B(A' + C)
=BA'C+A"+C)+C(A+B +AB')=B(A'+C)+ C'(A+ B)

When manipulating an expression that contains several exclusive-OR or equiv-
alence operations, it is useful to note that

XY +X'Y) =XY+ XY (3-19)
For example,
A @B®C=[A'B' +(A")B]®C
=(A'B'+ AB)C' + (A'B' + AB)'C (by (3-6))
=(A'B'+ AB)C' + (A'B + AB")C (by (3-19))
=A'B'C' + ABC' + A'BC + AB'C

3.3 The Consensus Theorem

The consensus theorem is very useful in simplifying Boolean expressions. Given an
expression of the form XY + X'Z + YZ, the term YZ is redundant and can be elim-
inated to form the equivalent expression XY + X'Z.

The term that was eliminated is referred to as the consensus term. Given a pair
of terms for which a variable appears in one term and the complement of that vari-
able in another, the consensus term is formed by multiplying the two original terms
together, leaving out the selected variable and its complement. For example, the
consensus of ab and a’c is bc; the consensus of abd and b'de’ is (ad)(de') = ade'.The
consensus of terms ab'd and a’bd’ is 0.

The consensus theorem can be stated as follows:

XY+ XZ+YZ=XY+XZ (3-20)

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Boolean Algebra (Continued) 67

Proof:
XY+ XZ+YZ=XY+XZ+(X+X)YZ
=(XY+XYZ)+ (X'Z+ X'YZ)
=XYQ+2)+XZA+Y)=XY+X'Z

The consensus theorem can be used to eliminate redundant terms from Boolean
expressions. For example, in the following expression, b’c is the consensus of a’b’ and
ac, and ab is the consensus of ac and bc’, so both consensus terms can be eliminated:

a'b’ +ac+ bc' +b'c+ab=a'b" + ac+ bc’
| E—

The brackets indicate how the consensus terms are formed.
The dual form of the consensus theorem is

X+Y)X +Z) Y+ 2Z)=(X+Y)X + Z) (3-21)

Note again that the key to recognizing the consensus term is to first find a pair of terms,
one of which contains a variable and the other its complement. In this case, the con-
sensus is formed by adding this pair of terms together leaving out the selected variable
and its complement. In the following expression, (a + b + d') is a consensus term and
can be eliminated by using the dual consensus theorem:

| 1
(a+b+cYa+b+d)Yb+ctd)=(@+b+c)b+c+d)

The final result obtained by application of the consensus theorem may depend
on the order in which terms are eliminated.

— A'C'D + A'BD + B&€Dh + ABC + ACD’ (3-22)
Example
First, we eliminate BCD as shown. (Why can it be eliminated?)

Now that BCD has been eliminated, it is no longer there, and it cannot be used
to eliminate another term. Checking all pairs of terms shows that no additional
terms can be eliminated by the consensus theorem.

Now we start over again:

A'C'D + ABD + BCD + ABC + ACD' (3-23)

This time, we do not eliminate BCD; instead we eliminate two other terms by the
consensus theorem. After doing this, observe that BCD can no longer be eliminat-
ed. Note that the expression reduces to four terms if BCD is eliminated first, but
that it can be reduced to three terms if BCD is not eliminated.

Sometimes it is impossible to directly reduce an expression to a minimum number
of terms by simply eliminating terms. It may be necessary to first add a term using the
consensus theorem and then use the added term to eliminate other terms. For example,
consider the expression

F=ABCD + B'CDE + A'B" + BCE'
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If we compare every pair of terms to see if a consensus term can be formed, we find
that the only consensus terms are ACDE (from ABCD and B'CDE) and A'CE’
(from A’B' and BCE'). Because neither of these consensus terms appears in the
original expression, we cannot directly eliminate any terms using the consensus the-
orem. However, if we first add the consensus term ACDE to F, we get

I |
F=ABCD + B'CDE + A'B’' + BCE' + ACDE
Then, we can eliminate ABCD and B'CDE using the consensus theorem, and F

reduces to
F=A'B'+ BCE' + ACDE

The term ACDE is no longer redundant and cannot be eliminated from the final
expression.

3.4 Algebraic Simplification
of Switching Expressions

In this section we review and summarize methods for simplifying switching expres-
sions, using the laws and theorems of Boolean algebra. This is important because
simplifying an expression reduces the cost of realizing the expression using gates.
Later, we will learn graphical methods for simplifying switching functions, but we
will learn algebraic methods first. In addition to multiplying out and factoring, three
basic ways of simplifying switching functions are combining terms, eliminating
terms, and eliminating literals.

1. Combining terms. Use the theorem XY + XY’ = X to combine two terms. For
example,

abc'd' + abed' = abd’ [X=abd',Y = ] (3-24)

When combining terms by this theorem, the two terms to be combined should con-
tain exactly the same variables, and exactly one of the variables should appear com-
plemented in one term and not in the other. Because X + X = X, a given term may
be duplicated and combined with two or more other terms. For example,

ab'c + abc + a’'bc = ab'c + abc + abc + a'bc = ac + bc

The theorem still can be used, of course, when X and Y are replaced with more com-
plicated expressions. For example,

(atbc)(d+e)ta(d +c)d+e)=d+e
[X=d+e,Y=a+beY =d( +c)]
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Eliminating terms. Use the theorem X + XY = X to eliminate redundant terms
if possible; then try to apply the consensus theorem (XY + X'Z + YZ = XY +
X'Z) to eliminate any consensus terms. For example,

a'b+a'bc=ab [X =a'b]
a'bc’ + bed +a'bd =a'bc’ + bed [X=¢ Y=0bd Z=a'b] (3-25)

Eliminating literals. Use the theorem X + X'Y = X + Y to eliminate redundant
literals. Simple factoring may be necessary before the theorem is applied.

A'B+ A'B'C'D' + ABCD' = A'(B + B'C'D') + ABCD'
= A'(B+ C'D') + ABCD'
= B(A' + ACD') + A'C'D’
=B(A' + CD') + A'C'D’
= A'B+BCD' + A'C'D’ (3-26)

The expression obtained after applying steps 1, 2, and 3 will not necessarily

have a minimum number of terms or a minimum number of literals. If it does not
and no further simplification can be made using steps 1, 2, and 3, the deliberate
introduction of redundant terms may be necessary before further simplification
can be made.

4.

Adding redundant terms. Redundant terms can be introduced in several ways
such as adding xx’, multiplying by (x + x"), adding yz to xy + x'z, or adding xy
to x. When possible, the added terms should be chosen so that they will combine
with or eliminate other terms.

WX+ XY+ XZ +WY'Z' (add WZ' by consensus theorem)
=WX+ XY+ XZ +WY'Z +WZ (eliminate WY'Z')
=WX+XY+XZ +WZ (eliminate WZ')

— WX+ XY +X2Z (3-27)

The following comprehensive example illustrates the use of all four methods:

A'B'C'D' + A'BC'D'+ A'BD + ABC'D + ABCD + ACD' + B'CD'’
@ A'C'D’ @
= A'C'D' + BD(A' + AC) + ACD' + B'CD’
®

= A'C'D' + A'BD + BCD + ACD' + B'CD'
;_\f—/
+ ABC®
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consensus ACD,
f—/%
=A'C'D' + A'BD + BED + ACD' + B'CD' + ABC
consensus BCD
= A'C'D' + A'BD + B'CD' + ABC (3-28)
What theorems were used in steps 1, 2, 3, and 4?
If the simplified expression is to be left in a product-of-sums form instead of a
sum-of-products form, the duals of the preceding theorems should be applied.
T (A’+B +C')(A'+ B + C)(B' + C)(A + C)(A+B—+E)
xample @A + B e
=+ B’)(BE;\C)(A +C)=(A"+B')(A+C) (3-29)

What theorems were used in steps 1,2, and 3?

In general, there is no easy way of determining when a Boolean expression has a
minimum number of terms or a minimum number of literals. Systematic methods for
finding minimum sum-of-products and minimum product-of-sums expressions will be
discussed in Units 5 and 6.

3.5 Proving Validity of an Equation

Often we will need to determine if an equation is valid for all combinations of values
of the variables. Several methods can be used to determine if an equation is valid:

1. Construct a truth table and evaluate both sides of the equation for all combi-
nations of values of the variables. (This method is rather tedious if the number
of variables is large, and it certainly is not very elegant.)

2. Manipulate one side of the equation by applying various theorems until it is
identical with the other side.

3. Reduce both sides of the equation independently to the same expression.

4. [Itis permissible to perform the same operation on both sides of the equation pro-
vided that the operation is reversible. For example, it is all right to complement
both sides of the equation, but it is not permissible to multiply both sides of the
equation by the same expression. (Multiplication is not reversible because divi-
sion is not defined for Boolean algebra.) Similarly, it is not permissible to add
the same term to both sides of the equation because subtraction is not defined
for Boolean algebra.
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To prove that an equation is not valid, it is sufficient to show one combination of
values of the variables for which the two sides of the equation have different values.
When using method 2 or 3 above to prove that an equation is valid, a useful strat-
egy is to

1. First reduce both sides to a sum of products (or a product of sums).

2. Compare the two sides of the equation to see how they differ.

3. Then try to add terms to one side of the equation that are present on the other side.
4. Finally try to eliminate terms from one side that are not present on the other.

Whatever method is used, frequently compare both sides of the equation and let the
difference between them serve as a guide for what steps to take next.

Show that
A'BD' + BCD + ABC' + AB'D = BC'D' + AD + A'BC

Starting with the left side, we first add consensus terms, then combine terms, and
finally eliminate terms by the consensus theorem.

A'BD' + BCD + ABC' + AB'D

=A'BD' + BCD + ABC' + AB'D + BC'D' + A'BC + ABD

(add consensus of A’BD’ and ABC’) ol 1 7

(add consensus of A’BD" and BCD)
(add consensus of BCD and ABC")
=AD + A'BD' + BCD + ABC' + BC'D' + A'BC=BC'D' + AD + A'BC
l A {eliminate consensus of BC'D' and AD)
(eliminate consensus of AD and A’'BC)

(eliminate consensus of BC'D’ and A’BC) (3-30)

Show that the following equation is valid:
A'BC'D + (A" + BCO)(A+ C'D') + BC'D + A'BC’
=ABCD + A'C'D' + ABD + ABCD' + BC'D

First, we will reduce the left side:
A'BC'D + (A" + BC)(A+ C'D')+ BC'D + A'BC’

(eliminate A'BC'D using (2-13))
= (A’ + BC)(A + C'D') + BC'D + A'BC’

(multiply out using (3-3))
=ABC+ A'C'D' + BC'D + A'BC’

(eliminate A’ BC’ by consensus)
=ABC+ A'C'D' + BC'D
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Now we will reduce the right side:

= ABCD + A'C'D" + ABD + ABCD' + BC'D
(combine ABCD and ABCD")

=ABC+ A'C'D' + ABD + BC'D
(eliminate ABD by consensus)

=ABC+ A'C'D' + BC'D

Because both sides of the original equation were independently reduced to the
same expression, the original equation is valid.

As we have previously observed, some of the theorems of Boolean algebra are
not true for ordinary algebra. Similarly, some of the theorems of ordinary algebra
are not true for Boolean algebra. Consider, for example, the cancellation law for
ordinary algebra:

Ifx+y=x+z then y=z (3-31)

The cancellation law is not true for Boolean algebra. We will demonstrate this by
constructing a counterexample in which x + y=x+zbuty#z Letx=1,y =0,
z = 1. Then,

1+0=1+1but0#1
In ordinary algebra, the cancellation law for multiplication is
If xy = xz, then y=z (3-32)

This law is valid provided x # 0.

In Boolean algebra, the cancellation law for multiplication is also not valid
when x = 0. (Letx =0,y =0,z =1;then0-0=0-1,but 0# 1). Because x = 0
about half of the time in switching algebra, the cancellation law for multiplication
cannot be used.

Even though Statements (3-31) and (3-32) are generally false for Boolean alge-
bra, the converses

Ify =z then xX+y=x+z (3-33)
Ifty=z then Xy = xz (3-34)

are true. Thus, we see that although adding the same term to both sides of a
Boolean equation leads to a valid equation, the reverse operation of canceling or
subtracting a term from both sides generally does not lead to a valid equation.
Similarly, multiplying both sides of a Boolean equation by the same term leads to
a valid equation, but not conversely. When we are attempting to prove that an
equation is valid, it is not permissible to add the same expression to both sides of
the equation or to multiply both sides by the same expression, because these oper-
ations are not reversible.
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Programmed Exercise 3.1

Cover the answers to this exercise with a sheet of paper and slide it down as you
check your answers. Write your answer in the space provided before looking at the
correct answer.

The following expression is to be multiplied out to form a sum of products:

(A+ B+ C)A + B +D)A + C+D')A+C +D)

First, find a pair of sum terms which have two literals in common and apply the sec-
ond distributive law. Also, apply the same law to the other pair of terms.

Answer (A + C'+ BD)[A' + (B' + D)(C + D")]
(Note: This answer was obtained by using (X + Y)(X + Z) = X + YZ.)

Next, find a pair of sum terms which have a variable in one and its complement in
the other. Use the appropriate theorem to multiply these sum terms together with-
out introducing any redundant terms. Apply the same theorem a second time.

Answer (A + C'+BD)(A' + B'D’' + CD) = A(B'D' + CD) + A'(C' + BD) or
A(B'+ D)(C+D')+ A'(C' + BD) = A(B'D' + CD) + A'(C' + BD)
(Note: This answer was obtained using (X + Y)(X' + Z) = XZ + X'Y.)

Complete the problem by multiplying out using the ordinary distributive law.

Final Answer AB'D' + ACD + A'C' + A'BD

Programmed Exercise 3.2

Cover the answers to this exercise with a sheet of paper and slide it down as you
check your answers. Write your answer in the space provided before looking at the
correct answer.

The following expression is to be factored to form a product of sums:

WXY + WX Z+WY'Z+WYZ

First, factor as far as you can using the ordinary distributive law.
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Answer WY (X+Z)+W(X'Z+YZ)

Next, factor further by using a theorem which involves a variable and its comple-
ment. Apply this theorem twice.

Answer W+ XZ+YZ)NW +Y'(X+ Z)]
=W+ X +Z)Y Y+ 2)|[W +Y X+ 2)]

or WY' (X + Z)+ W(X' + Z)Y + Z)
=W+ X +Z) Y+ 2)|[W +Y X+ 2)]
[Note: This answer was obtained by using AB + A'C = (A + C)(A' + B).]

Now, complete the factoring by using the second distributive law.

Final answer W+ X +Z"YW+Y+Z)Y W +Y)YW + X+ Z)

Programmed Exercise 3.3

Cover the answers to this exercise with a sheet of paper and slide it down as you
check your answers. Write your answer in the space provided before looking at the
correct answer.

The following expression is to be simplified using the consensus theorem:

AC'+ AB'D+A'B'C+A'CD' + B'C'D'’

First, find all of the consensus terms by checking all pairs of terms.

Answer The consensus terms are indicated.
/_A,B,D(j
AC'+ AB'D + A'B'C+ A'CD' + B'.C'D’
B'CD A'B'D’

AB'C’
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Can the original expression be simplified by the direct application of the con-
sensus theorem?

No, because none of the consensus terms appears in the original expression.

Now add the consensus term B’CD to the original expression. Compare the added
term with each of the original terms to see if any consensus exists. Eliminate as
many of the original terms as you can.

(AB'D)
AC' + ABD + A"BLC + A'CD’' + B'C'D' + B'CD
(A'B'C)

Now that we have eliminated two terms, can B’CD also be eliminated? What is the
final reduced expression?

No, because the terms used to form B'CD are gone. Final answer is

AC' + A'CD' + B'C'D' + B'CD

Programmed Exercise 3.4

Keep the answers to this exercise covered with a sheet of paper and slide it down as
you check your answers.
Problem: The following expression is to be simplified

ab'cd’e + acd + acf'gh’ + abcd’'e + acde' + e'h’

State a theorem which can be used to combine a pair of terms and apply it to com-
bine two of the terms in the above expression.

Apply XY + XY' = X to the terms ab’cd’e and abcd'e, which reduces the
expression to
acd'e + acd + acf'gh’ + acde' + e'h’
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Now state a theorem (other than the consensus theorem) which can be used to elim-
inate terms and apply it to eliminate a term in this expression.

Answer Apply X + XY = X to eliminate acde’. (What term corresponds to X?) The result is
acd'e + acd + acf'gh’ + e'h’

Now state a theorem that can be used to eliminate literals and apply it to elimi-
nate a literal from one of the terms in this expression. (Hint: It may be necessary
to factor out some common variables from a pair of terms before the theorem can
be applied.)

Answer Use X + X'Y = X + Y to eliminate a literal from acd’e. To do this, first factor ac
out of the first two terms: acd’e + acd = ac(d + d'e). After eliminating d ', the
resulting expression is

ace + acd + acf'gh’ + e'h’

(a) Can any term be eliminated from this expression by the direct application of the
consensus theorem?

(b) If not, add a redundant term using the consensus theorem, and use this redun-
dant term to eliminate one of the other terms.

(c) Finally, reduce your expression to three terms.

Answer (a) No
(b) Add the consensus of ace and e'h':
ace + acd + acf'gh’ + e'h’ + ach’
Now eliminate acf'gh’ (by X + XY = X)
ace + acd + e'h’' + ach’
(c) Now eliminate ach' by the consensus theorem. The final answer is
ace + acd + e'h’
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Programmed Exercise 3.5

Keep the answers to this exercise covered with a sheet of paper and slide it down as
you check your answers.

Z=A+C+F+GA+C +F+G)A+B+C' +D' +G)
(A+C+E+G)YA' +B+G)B+C +F+G)
This is to be simplified to the form
X+ X+ X)X+ X+ X)X +X+X)

where each X represents a literal.
State a theorem which can be used to combine the first two sum terms of Z and
apply it. (Hint: The two sum terms differ in only one variable.)

Answer X+Y)X+Y)=X
Z=(A+C +G)A+B+C +D +G)A+C+E+G)A +B+G)
(B+C'+F+G)

Now state a theorem (other than the consensus theorem) which can be used to
eliminate a sum term and apply it to this expression.

Answer XX+Y)=X
Z=A+C +G)A+C+E+GA'"+B+G)(B+C' +F+G)

Next, eliminate one literal from the second term, leaving the expression oth-
erwise unchanged. (Hint: This cannot be done by the direct application of one the-
orem; it will be necessary to partially multiply out the first two sum terms before
eliminating the literal.)

Answer A+C +G)A+CHE+G)=A+G+C(C+E)=A+G+CE
Therefore,

Z=(A+C +G)A+E+G)A' +B+G)(B+C +F+G)
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(a) Can any term be eliminated from this expression by the direct application of the
consensus theorem?

(b) If not, add a redundant sum term using the consensus theorem, and use this
redundant term to eliminate one of the other terms.

(¢) Finally, reduce your expression to a product of three sum terms.

Answer  (a) No
(b) Add B+ C" + G (consensus of A + C' + G and A" + B + G).
Use X(X + Y) = X, where X = B + C' + G, to eliminate B+ C' + F + G.
(¢) Now eliminate B + C' + G by consensus. The final answer is
Z=A+C+G)(A+E+G)A"+B+G)

Problems

3.6 In each case, multiply out to obtain a sum of products: (Simplify where possible.)
@ W+ X' +Z YW +Y)YW+X+Z)YW+ X)W+ Y+ 2Z)
b)) (A+B+C+D)(A'+B +C+D")(A +C)(A+D)(B+C+D)

3.7 Factor to obtain a product of sums. (Simplify where possible.)
(a) BCD +C'D' + B'C'D + CD
(b) A’C'D' + ABD' + A'CD + B'D

3.8 Write an expression for F and simplify.

A_
D_

3.9 s the following distributive law valid? A ® BC = (A @ B)(A ® C) Prove your answer.

3.10 (a) Reduce to a minimum sum of products (three terms):
X+W(Y®Z)+XW
(b) Reduce to a minimum sum of products (four terms):
(A® BC) + BD + ACD
(c) Reduce to a minimum product of sums (three terms):
A'+C +D)YA' +B+C)YA+B+D)(A+C+ D)
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3.11 Simplify algebraically to a minimum sum of products (five terms):
(A+B +C+E)YA+B +D' ' +E)(B+C +D'+FE')

3.12 Prove algebraically that the following equation is valid:
A'CD'E + A'B'D' + ABCE + ABD = A'B'D' + ABD + BCD'E

3.13 Simplify each of the following expressions:
(a) KLMN' + K'L'MN + MN'
(b) KL'M' + MN' + LM'N'’
(c) (K+L)YK' +L" +N)(L"+M+N'")
(d) (K'+L+M +N)YK' +M +N+R)K +M +N+ R)KM

3.14 Factor to obtain a product of sums:
(a) K'L'M + KM'N + KLM + LM'N’  (four terms)
(b) KL+ K'L'+ L'M'N' + LMN' (four terms)
(¢c) KL+ KL'M+ L'M'N+ LM'N’ (four terms)
(d) K'M'N + KL'N' + K'MN' + LN (four terms)
(e) WXY + WX'Y + WYZ + XYZ' (three terms)

3.15 Multiply out to obtain a sum of products:
(a) (K"+ M + N)(K' + M)(L+M +N)K"+ L+ M)(M+ N) (three terms)
®) (K'+L" +MYK+M+N)K+ LYK+ N)(K"+M+ N)
() (K'+ L' + M)(K+N)K' +L+N)K+L)K+M+N')
(d (K+L+M(K +L" +N)K' +L" +M)K+L+N)
e)(K+L+MEK+M+N(K +L +M)K +M +N')

3.16 Eliminate the exclusive-OR, and then factor to obtain a minimum product of sums:
(a) (KL®M) + M'N’
(b) M'(K®N') + MN + K'N

3.17 Algebraically prove identities involving the equivalence (exclusive-NOR) operation:

(a) x=0=x'
(b) x=1=x
(c)x=x=1
(d)x=x"=0

(e) x=y=y=x
) x=y)=z=x=(=2)
(@ (x=y) =x'=y=x=y

3.18 Algebraically prove identities involving the exclusive-OR operation:

(a) x®0=x

b)) x®1=x'

() x®x=0

(d) x®x' =1

() x@y=y®dx

) (xDy)®z=x®(yD2z)

(8) x®y) =x"®y=x@)
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3.19 Algebraically prove the following identities:
@A) x+ty=x®@y®Duxy
b)) x+y=x=y=uxy

3.20 Algebraically prove or disprove the following distributive identities:
(a) x(y ®z) =xy ®xz
b)) x+(@z)=x+y)®(x+2)
(¢) x(y =2) =xy=2xz
Dx+=2)=@x+y)=k+2)

3.21 Simplify each of the following expressions using only the consensus theorem (or its
dual):
(a) BC'D' + ABC' + AC'D + AB'D + A'BD’ (reduce to three terms)
(b) WY + WYZ + XY'Z + WX'Y (reduce to three terms)
(c) B+C+D)YA+B+C)A'+C+D)YB +C' +D')
(d) WXY+WXZ+WY'Z+WZ
(e) A’/BC' + BC'D' + A'CD + B'CD + A'BD
) A+B+C)(B+C +D)A+B+D)A"+B +D')

3.22 Factor Z = ABC + DE + ACF + AD' + AB'E’ and simplify it to the form (X +
X) (X + X)(X+ X+ X+ X) (where each X represents a literal). Now express Z
as a minimum sum of products in the form:

XX+ XX + XX + XX

3.23 Repeat Problem 3.22 for F= A'B + AC + BC'D' + BEF + BDFE

3.24 Factor to obtain a product of four terms and then reduce to three terms by applying
the consensus theorem: X'Y'Z" + XYZ

3.25 Simplify each of the following expressions:

(a) xy +x'yvz' +yz

(b) (xy" + 2)(x +y')z

(¢) xy' +z+ (x" +y)z’

(d) ad(b’ +c¢)+ad(b+c)+ (b +c)(b+c)

(e) wix' +xy' +yz +wz'

(fy A’'BCD + A'BC'D + B'EF + CDE'G + A'DEF + A'B'EF (reduce to a sum
of three terms)

(g) [(@ +d +Db'c)(b+d+ac")] +b'c'd + a'c'd (reduce to three terms)

3.26 Simplify to a sum of three terms:
(a) A'/C'D' + AC' + BCD + A'CD' + A'BC + AB'C’
(b) A’B'C' + ABD + A’C+ A'CD' + AC'D + AB'C’

3.27 Reduce to a minimum sum of products:

F=WXY + (WY =X) + (Y ® WZ).
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3.28 Determine which of the following equations are always valid (give an algebraic
proof):
(@) a’'b+b'c+c'a=ab' + bc' + ca’
() (a+b)(b+c)c+a)=(a +b)b + ) +a)
(c) abc +ab'c" + b'cd + bc'd + ad = abc + ab’c’ + b'cd + bc'd
(d) xy' +x'z+yz' =x'y+xz' +y'z
() (x+ )y +2)(x+2) =" +y)y + )" +2)
(f) abc' +ab'c + b'c'd + bed = ab'c + abc' + ad + bed + b'c'd

3.29 The following circuit is implemented using two half-adder circuits. The expressions
for the half-adder outputs are S = A ® B where @ represents the exclusive-OR
function, and C = AB. Derive simplified sum-of-products expressions for the circuit
outputs SUM and C,. Give the truth table for the outputs.

X —A S A S ———SUM
Yy —{B C —

e d >
Ci

3.30 The output of a majority circuit is 1 if a majority (more than half) of its inputs
are equal to 1, and the output is 0 otherwise. Construct a truth table for a three-
input majority circuit and derive a simplified sum-of-products expression for
its output.

3.31 Prove algebraically:
a) X +Y)X=2)+(X+Y)XBPZ)=(XDY)+ Z
O W+X+Y)W+X + Y WH+Y +2)=XY + WX+ XYZ+WYZ
(c) ABC+A'C'D'+ A'BD' + ACD = (A" + C)(A+ D")(B + C' + D)

3.32 Which of the following statements are always true? Justify your answers.
(a) If A + B=C, then AD' + BD' = CD'
(b) fA'B+ A'C=A'D,then B+ C=D
(c) fA+B=CthenA+B+D=C+D
(d IfA+B+C=C+D,thenA+B=D

3.33 Find all possible terms that could be added to each expression using the consensus
theorem. Then reduce to a minimum sum of products.
(a) A'/C" + BC+ AB'+ A'BD + B'C'D' + ACD'
(b) A’C'D" + BC'D + AB'C' + A'BC

3.34 Simplify the following expression to a sum of two terms and then factor the result
to obtain a product of sums: abd'f" + b'cegh’ + abd'f + acd’e + b'ce

3.35 Multiply out the following expression and simplify to obtain a sum-of-products
expression with three terms: (a + ¢)(b' + d)(a +c¢' +d")(b' + ' +d')
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3.36 Factor and simplify to obtain a product-of-sums expression with four terms:
abc' +d'e + ace + b'c'd

3.37 (a) Showthatx ®y = (x =y)’
(b) Realize a’b’c’ + a’bc + ab’c + abc' using only two-input equivalence gates.
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' Y'Y Applications of Boolean Algebra
| Minterm and Maxterm

Expansions

Objectives

1. Given a word description of the desired behavior of a logic circuit, write
the output of the circuit as a function of the input variables. Specify this
function as an algebraic expression or by means of a truth table, as is
appropriate.

2. Given a truth table, write the function (or its complement) as both a
minterm expansion (standard sum of products) and a maxterm expansion
(standard product of sums). Be able to use both alphabetic and decimal
notation.

3. Given an algebraic expression for a function, expand it algebraically to
obtain the minterm or maxterm form.

4. Given one of the following: minterm expansion for £, minterm expansion
for F/, maxterm expansion for £ or maxterm expansion for F’, find any of
the other three forms.

5. Write the general form of the minterm and maxterm expansion of a func-
tion of n variables.

6. Explain why some functions contain don’t-care terms.

7. Explain the operation of a full adder and a full subtracter and derive logic
equations for these modules. Draw a block diagram for a parallel adder
or subtracter and trace signals on the block diagram.

83
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Study Guide

In the previous units, we placed a dot (¢) inside the AND-gate symbol, a plus sign
(+) inside the OR-gate symbol, and a @ inside the Exclusive-OR. Because you are
now familiar with the relationship between the shape of the gate symbol and the
logic function performed, we will omit the e, +,and @ and use the standard gate
symbols for AND, OR, and Exclusive-OR in the rest of the book.

1. Study Section 4.1, Conversion of English Sentences to Boolean Equations.

(a) Use braces to identify the phrases in each of the following sentences:
(1) The tape reader should stop if the manual stop button is pressed,

if an error occurs, or if an end-of-tape signal is present.
(2) He eats eggs for breakfast if it is not Sunday and
he has eggs in the refrigerator.
(3) Addition should occur iff an add instruction is given and
the signs are the same, or if a subtract instruction is given and
the signs are not the same.

(b) Write a Boolean expression which represents each of the sentences in (a).
Assign a variable to each phrase, and use a complemented variable to rep-
resent a phrase which contains “not”.

(Your answers should be in the form F=SE, F=AB + SB’, and
F=A + B+ C,but not necessarily in that order.)

(c) If Xrepresents the phrase “N is greater than 3”, how can you represent the
phrase “N is less than or equal to 3”?

(d) Work Problems 4.1 and 4.2.
2. Study Section 4.2, Combinational Logic Design Using a Truth Table. Previously,

you have learned how to go from an algebraic expression for a function to a
truth table; in this section you will learn how to go from a truth table to an alge-
braic expression.

(a) Write a product term which is 1 iffa = 0,b = 0,and ¢ = 1.

(b) Write a sum term whichis O iffa = 0,b = 0,and ¢ = 1.

(c) Verity that your answers to (a) and (b) are complements.
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(d) Write a product term which is 1 iffa = 1,6 = 0,c = 0,and d = 1.

(e) Write a sum term which is O iffa = 0,b =0,c = 1,and d = 1.

(f) For the given truth table, write F as a sum of four abc F
product terms which correspond to the four 1’s of F 000 1

001 1

(g) From the truth table write F as a product of four sum 010 0
terms which correspond to the four 0’s of F (1) (1) (1) 1

101 0

110 0

(h) Verify that your answers to both (f) and (g) reduce to 111 0

F=b'c"+ac

Study Section 4.3, Minterm and Maxterm Expansions.

(a) Define the following terms:
minterm (for n variables)

maxterm (for n variables)

(b) Study Table 4-1 and observe the relation between the values of A, B, and
C and the corresponding minterms and maxterms.
If A =0, then does A or A" appear in the minterm?
In the maxterm?
If A =1, then does A or A" appear in the minterm?
In the maxterm?
What is the relation between minterm, m;, and the corresponding
maxterm, M;?

(c) For the table given in Study Guide Question 2(f), write the minterm
expansion for F in m-notation and in decimal notation.

For the same table, write the maxterm expansion for F in M-notation and
in decimal notation.

Check your answers by converting your answer to 2(f) to m-notation and
your answer to 2(g) to M-notation.
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(d) Given a sum-of-products expression, how do you expand it to a standard
sum of products (minterm expansion)?

(e) Given a product-of-sums expression, how do you expand it to a standard
product of sums (maxterm expansion)?

(f) In Equation (4-11), what theorems were used to factor f to obtain the
maxterm expansion?

(g) Why is the following expression not a maxterm expansion?
f(A,B,C,D)=(A+B"+C+D)A"+B+C)YA"+B+C+D")

(h) Assuming that there are three variables (A, B, C), identify each of the
following as a minterm expansion, maxterm expansion, or neither:

(1) AB + B'C’ 2) (A"+B+C)YA+B +C)
3)A+B+C 4) (A"+B)(B' +C)A"+(O)
(5) A'BC' + AB'C + ABC (6) AB'C’
Note that it is possible for a minterm or maxterm expansion to have only
one term.

4. (a) Given a minterm in terms of its variables, the procedure for conversion to
decimal notation is
(1) Replace each complemented variable with a and replace each
uncomplemented variable with a
(2) Convert the resulting binary number to decimal.
(b) Convert the minterm AB'C'DE to decimal notation.

(c) Given that m,3 is a minterm of the variables A, B, C, D, and E, write the
minterm in terms of these variables.

(d) Given a maxterm in terms of its variables, the procedure for conversion
to decimal notation is
(1) Replace each complemented variable with a and replace each
uncomplemented variable with a
(2) Group these 0’s and 1’s to form a binary number and convert to decimal.
(e) Convert the maxterm A’ + B + C+ D'+ E' to decimal notation.

(f) Given that M5 is a maxterm of the variables A, B, C, D, and E, write the
maxterm in terms of these variables.

(g) Check your answers to (b), (c), (e), and (f) by using the relation M; = m,’.

h) Given f(a, b, c, d, e) =11 M(0, 10, 28), express fin terms of a, b, ¢, d, and e.
P
(Your answer should contain only five complemented variables.)
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Study Section 4.4, General Minterm and Maxterm Expansions. Make sure that
you understand the notation here and can follow the algebra in all of the equa-
tions. If you have difficulty with this section, ask for help before you take the
readiness test.

(a) How many different functions of four variables are possible?

(b) Explain why there are 22" functions of n variables.
(c) Write the function of Figure 4-1 in the form of Equation (4-13) and show
that it reduces to Equation (4-3).

(d) For Equation (4-19), write out the indicated summations in full for the
case n = 2.

(e) Study Tables 4-3 and 4-4 carefully and make sure you understand why
each table entry is valid. Use the truth table for fand f' (Figure 4-1) to
verify the entries in Table 4-4. If you understand the relationship
between Table 4-3 and the truth table for f and f’, you should be able to
perform the conversions without having to memorize the table.

(f) Given that f(A, B, C) = 2m(0,1,3,4,7)

The maxterm expansion for f1is

The minterm expansion for f” is

The maxterm expansion for f” is
(g) Work Problem 4.3 and 4.4.

Study Section 4.5, Incompletely Specified Functions.

(a) State two reasons why some functions have don’t-care terms.

ABC

. . . . . 000
(b) Given the following table, write the minterm expansion 5 1

for Z in decimal form. 010
011

N

(c) Write the maxterm expansion in decimal form.

OO0 - XXoOoX-=

100
101
110
111

(d) Work Problems 4.5 and 4.6.
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7. Study Section 4.6, Examples of Truth Table Construction. Finding the truth
table from the problem statement is probably the most difficult part of the
process of designing a switching circuit. Make sure that you understand how
to do this.

8. Work Problems 4.7 through 4.10.
9. Study Section 4.7, Design of Binary Adders.

(a) For the given parallel adder, show the 0’s and 1’s at the full adder
(FA) inputs and outputs when the following unsigned numbers are added:
11 + 14 = 25. Verify that the result is correct if C,555,5,S, is taken as a
5-bit sum. If the sum is limited to 4 bits, explain why this is an overflow
condition.

(‘4 ) § i § C V()

(b) Review Section 1.4, Representation of Negative Numbers. 1f we use the 2’s
complement number system to add (—5) + (—2), verify that the FA inputs
and outputs are exactly the same as in Part (a). However, for 2’s comple-
ment, the interpretation of the results is quite different. After discarding
C,, verify that the resultant 4-bit sum is correct, and therefore no overflow
has occurred.

(c) If we use the 1’s complement number system to add (—5) + (—2), show
the FA inputs and outputs on the diagram below before the end-around
carry is added in. Assume that C; is initially 0. Then add the end-around
carry (C,) to the rightmost FA, add the new carry (C,) into the next cell,
and continue until no further changes occur. Verify that the resulting
sum is the correct 1’s complement representation of —7.
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(a) Work the following subtraction example. As you subtract each column,
place a 1 over the next column if you have to borrow, otherwise place a 0.
For each column, as you compute x; — y; — b, fill in the corresponding val-
ues of b;;; and d; in the truth table. If you have done this correctly, the
resulting table should match the full subtracter truth table (Table 4-6).

« borrows )(;I}(/)’t())l b, d;
11000110 «X 00
—01011010 «Y 010
« difference 011
100
101
110
111

(b) Work Problems 4.11 and 4.12.

Read the following and then work Problem 4.13 or 4.14 as assigned:

When looking at an expression to determine the required number of gates, keep
in mind that the number of required gates is generally not equal to the number
of AND and OR operations which appear in the expression. For example,

AB + CD + EF(G + H)

contains four AND operations and three OR operations, but it only requires
three AND gates and two OR gates:

Simulation Exercise. (Must be completed before you take the readiness test.)
One purpose of this exercise is to acquaint you with the simulator that you will
be using later in more complex design problems. Follow the instructions on the
Unit 4 lab assignment sheet.

Reread the objectives of this unit. Make sure that you understand the difference
in the procedures for converting maxterms and minterms from decimal to alge-
braic notation. When you are satisfied that you can meet the objectives, take the
readiness test. When you come to take the readiness test, turn in a copy of your
solution to assigned simulation exercise.
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Applications of Boolean Algebra
Minterm and Maxterm
Expansions

In this unit you will learn how to design a combinational logic circuit starting
with a word description of the desired circuit behavior. The first step is usually to
translate the word description into a truth table or into an algebraic expression.
Given the truth table for a Boolean function, two standard algebraic forms of the
function can be derived—the standard sum of products (minterm expansion) and
the standard product of sums (maxterm expansion). Simplification of either of
these standard forms leads directly to a realization of the circuit using AND and
OR gates.

4.1 Conversion of English Sentences
to Boolean Equations

The three main steps in designing a single-output combinational switching circuit are

1. Find a switching function that specifies the desired behavior of the circuit.
2. Find a simplified algebraic expression for the function.
3. Realize the simplified function using available logic elements.

For simple problems, it may be possible to go directly from a word description of the
desired behavior of the circuit to an algebraic expression for the output function. In
other cases, it is better to first specify the function by means of a truth table and then
derive an algebraic expression from the truth table.

Logic design problems are often stated in terms of one or more English sentences.
The first step in designing a logic circuit is to translate these sentences into Boolean
equations. In order to do this, we must break down each sentence into phrases and
associate a Boolean variable with each phrase. If a phrase can have a value of true or
false, then we can represent that phrase by a Boolean variable. Phrases such as “she
goes to the store” or “today is Monday” can be either true or false, but a command
like “go to the store” has no truth value. If a sentence has several phrases, we will mark
each phrase with a brace. The following sentence has three phrases:

Mary watches TV if it is Monday night and she has finished her homework.

90
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The “if” and “and” are not included in any phrase; they show the relationships among
the phrases.
We will define a two-valued variable to indicate the truth or falsity of each phrase:

F =1 if “Mary watches TV” is true; otherwise, F = 0.
A = 11if “it is Monday night” is true; otherwise, A = 0.
B =1 if “she has finished her homework” is true; otherwise B = 0.

Because Fis “true” if A and B are both “true”, we can represent the sentence
by F= A'B

The following example illustrates how to go from a word statement of a problem
directly to an algebraic expression which represents the desired circuit behavior. An
alarm circuit is to be designed which operates as follows:

The alarm will ring iff the alarm switch is turned on and the door is not closed,
or it is after 6 M. and the window is not closed.

The first step in writing an algebraic expression which corresponds to the above
sentence is to associate a Boolean variable with each phrase in the sentence. This
variable will have a value of 1 when the phrase is true and 0 when it is false. We will
use the following assignment of variables:

The alarm will ring ~ iff the alarm switch is on and
yA A
the door is not closed or it is after 6 P.M. and
B’ C
the window is not closed.
D’

This assignment implies that if Z = 1, the alarm will ring. If the alarm switch is
turned on, A = 1, and if it is after 6 pm., C = 1. If we use the variable B to represent
the phrase “the door is closed”, then B’ represents “the door is not closed”. Thus,
B =1 if the door is closed, and B’ =1 (B = 0) if the door is not closed. Similarly,
D =1 if the window is closed, and D' = 1 if the window is not closed. Using this
assignment of variables, the above sentence can be translated into the following
Boolean equation:

Z =AB" + CD’

This equation corresponds to the following circuit:
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In this circuit, A is a signal which is 1 when the alarm switch is on, C is a signal from
a time clock which is 1 when it is after 6 PM., B is a signal from a switch on the door
which is 1 when the door is closed, and similarly D is 1 when the window is closed.
The output Z is connected to the alarm so that it will ring when Z = 1.

4.2 Combinational Logic Design
Using a Truth Table

The next example illustrates logic design using a truth table. A switching circuit has
three inputs and one output, as shown in Figure 4-1(a). The inputs A, B, and C rep-
resent the first, second, and third bits, respectively, of a binary number N. The out-
put of the circuit is to be f = 1if N =011, and f = 0 if N < 011,. The truth table for
fis shown in Figure 4-1(b).

FIGURE 4-1 A — ABC f f’

‘ Cqmbi_national Bl L > 000 0 p
Circuit with Truth

Table C —> 001 0 1

010 0 1

(a) 011 1 0

100 1 0

101 1 0

110 1 0

111 1 0

(b)

Next, we will derive an algebraic expression for f from the truth table by using
the combinations of values of A, B, and C for which f= 1.The term A’'BC is 1 only
if A=0,B=1,and C = 1. Similarly, the term AB'C" is 1 only for the combination
100,AB'Cis 1 only for 101, ABC" is 1 only for 110,and ABCis 1 only for 111. ORing
these terms together yields

f=A'BC+ AB'C' + AB'C+ ABC' + ABC (4-1)

This expression equals 1 if A, B, and C take on any of the five combinations of val-
ues 011, 100, 101, 110, or 111. If any other combination of values occurs, f is 0
because all five terms are 0.

Equation (4-1) can be simplified by first combining terms and then eliminating A":

f=A'BC+AB'"+ AB=A'BC+ A=A+ BC (4-2)

Equation (4-2) leads directly to the following circuit:

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Applications of Boolean Algebra Minterm and Maxterm Expansions 93

Instead of writing fin terms of the 1’s of the function, we may also write fin terms
of the 0’s of the function. The function defined by Figure 4-1 is O for three combina-
tions of input values. Observe that the term A + B+ CisOonlyif A=B=C=0.
Similarly, A + B + C’ is 0 only for the input combination 001, and A + B’ + Cis 0
only for the combination 010. ANDing these terms together yields

f=(A+B+C)A+B+C)YA+B +C) (4-3)

This expression equals 0 if A, B, and C take on any of the combinations of values
000, 001, or 010. For any other combination of values, fis 1 because all three terms
are 1. Because Equation (4-3) represents the same function as Equation (4-1) they
must both reduce to the same expression. Combining terms and using the second
distributive law, Equation (4-3) simplifies to

f=(A+BA+B +C)=A+BB +C)=A+BC (44)

which is the same as Equation (4-2).
Another way to derive Equation (4-3) is to first write f’ as a sum of products,

and then complement the result. From Figure 4-1, f' is 1 for input combinations
ABC = 000, 001, and 010, so

f'=A'B'C'+A'B'C+ A'BC'
Taking the complement of f’ yields Equation (4-3).

4.3 Minterm and Maxterm Expansions

Each of the terms in Equation (4-1) is referred to as a minterm. In general, a minterm
of n variables is a product of # literals in which each variable appears exactly once in
either true or complemented form, but not both. (A literal is a variable or its comple-
ment.) Table 4-1 lists all of the minterms of the three variables A, B, and C. Each
minterm has a value of 1 for exactly one combination of values of the variables A, B,
and C. Thusif A=B=C=0,A'B'C'=1if A=B=0and C=1,A'B'C = 1;and
so forth. Minterms are often written in abbreviated form—A’B’C’ is designated m,,
A'B’'Cis designated my, etc. In general, the minterm which corresponds to row i of the
truth table is designated m; (i is usually written in decimal).

TABLE 4-1 Row No. ABC Minterms Maxterms
Minterms and 0 000 | ABC=m, | A+B+C =M,
Maxterms for 1 001 | ABC=m, | A+B+C =M,

Three Variables 2 010 | ABC =m, | A+B +C =M,
3 011 | ABC =my | A+B +C =M
4 100 | ABC =m, | A+B+C =M,
5 101 | ABC =ms | A +B+C =M
6 110 | ABC' =mg | A +B +C =M,
7 111 | ABC =m;, | A +B +C =M,
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When a function fis written as a sum of minterms as in Equation (4-1), this is
referred to as a minterm expansion or a standard sum of products.* If f = 1 for row i
of the truth table, then m; must be present in the minterm expansion because m; = 1
only for the combination of values of the variables corresponding to row i of the table.
Because the minterms present in f are in one-to-one correspondence with the 1’s of f
in the truth table, the minterm expansion for a function fis unique. Equation (4-1) can
be rewritten in terms of m-notation as

f(AyByc):Wl3+m4+m5+m6+m7 (4_5)
This can be further abbreviated by listing only the decimal subscripts in the form
f(A, B, C) =3 m(3,4,5,6,7) (4-3a)

Each of the sum terms (or factors) in Equation (4-3) is referred to as a maxterm.
In general, a maxterm of n variables is a sum of » literals in which each variable
appears exactly once in either true or complemented form, but not both. Table 4-1
lists all of the maxterms of the three variables A, B, and C. Each maxterm has a value
of 0 for exactly one combination of values for A, B, and C. Thus,if A = B=C =0,
A+B+C=0;if A=B=0and C=1,A + B+ C' = 0; and so forth. Maxterms
are often written in abbreviated form using M-notation. The maxterm which corre-
sponds to row i of the truth table is designated M,. Note that each maxterm is the
complement of the corresponding minterm, that is, M; = m/.

When a function fis written as a product of maxterms, as in Equation (4-3),
this is referred to as a maxterm expansion or standard product of sums. If f = 0 for
row i of the truth table, then M; must be present in the maxterm expansion
because M; = 0 only for the combination of values of the variables corresponding
to row i of the table. Note that the maxterms are multiplied together so that if any
one of them is 0, f will be 0. Because the maxterms are in one-to-one correspon-
dence with the 0’s of fin the truth table, the maxterm expansion for a function fis
unique. Equation (4-3) can be rewritten in M-notation as

f(A7 Bv C) = M0M1M2 (4_6)
This can be further abbreviated by listing only the decimal subscripts in the form
f(A, B, C) =11 M(0,1,2) (4-6a)

where II means a product.

Because if f# 1 then f= 0, it follows that if m; is not present in the minterm
expansion of f, then M, is present in the maxterm expansion. Thus, given a minterm
expansion of an n-variable function fin decimal notation, the maxterm expansion is
obtained by listing those decimal integers (0 =i = 2" — 1) not in the minterm list.
Using this method, Equation (4-6a) can be obtained directly from Equation (4-5a).

!Other names used in the literature for standard sum of products are canonical sum of products and
disjunctive normal form. Similarly, a standard product of sums may be called a canonical product of
sums or a conjunctive normal form.
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Given the minterm or maxterm expansions for f, the minterm or maxterm expan-
sions for the complement of fare easy to obtain. Because f” is 1 when fis 0, the minterm
expansion for f* contains those minterms not present in f Thus, from Equation (4-5),

f'=my+m +my=32m(0,1,2) (4-7)

Similarly, the maxterm expansion for f’ contains those maxterms not present in f.
From Equation (4-6),

f =11M(@3,4,5,6,7) = M;M,M;MsM, (4-8)

Because the complement of a minterm is the corresponding maxterm, Equation
(4-8) can be obtained by complementing Equation (4-5):

f/ = (m:; + ny + ms + mg + m7), = m%mimémém; = M3M4M5M6M7
Similarly, Equation (4-7) can be obtained by complementing Equation (4-6):
f’ = (M()M]Mz)’ = M(S + M]’ + Mé = my + my + ny

A general switching expression can be converted to a minterm or maxterm
expansion either using a truth table or algebraically. If a truth table is constructed
by evaluating the expression for all different combinations of the values of the
variables, the minterm and maxterm expansions can be obtained from the truth
table by the methods just discussed. Another way to obtain the minterm expan-
sion is to first write the expression as a sum of products and then introduce the
missing variables in each term by applying the theorem X + X' = 1.

—————== Find the minterm expansion of f(a,b,c,d) = a'(b' + d) + acd'.
Example

f=ab'" +a'd+ acd
=a'b'(c+c)d+d)+adb+b)c+c")+acd (b+b")
=a'b'c’'d +a'b'c’'d+a'b'cd +a'b'cd + a'be’d + a'b'ed
+ a'bc'd + a’bed + abed’ + ab’cd’ (4-9)

Duplicate terms have been crossed out, because X + X = X. This expression can
then be converted to decimal notation:

f=ab'c’'d +a'b'c’'d+a'b'cd +a'b'cd+ a'bc’'d+ a’'bed + abed’ + ab’cd’
0000 0001 0010 0011 0101 O111 1110 1010
f=3m(0,1,2,3,5,7,10,14) (4-10)

The maxterm expansion for f can then be obtained by listing the decimal integers
(in the range 0 to 15) which do not correspond to minterms of f:

f=T1M(®4,6,8,9,11,12,13,15)
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An alternate way of finding the maxterm expansion is to factor f to obtain a
product of sums, introduce the missing variables in each sum term by using XX’ =
0, and then factor again to obtain the maxterms. For Equation (4-9),

f=a ' +d)+ acd
=@ +cd)a+b +d)=(@ +c)a +d)a+b +d)
=(a +bb' +c+dd)a +bb +cc' +d)a+b +cc' +d)
=(a' +bb' +c+d)(a +bb + ¢+ d)a—+bbtetrd)
(@' +bb" +c" +d)a+ Db +cc’ +d)
=@+b+tc+d)a +b +c+d)a +b+c+d)a +b +c+d)

1000 1100 1001 1101
(@ +b+c"+d)a +b +c+d)Ya+b +c+d)a+b +c +d)
1011 1111 0100 0110
=11M®4,6,8,9,11,12,13,15) (4-11)

Note that when translating the maxterms to decimal notation, a primed variable is
first replaced with a 1 and an unprimed variable with a 0.

Because the terms in the minterm expansion of a function F correspond one-to-
one with the rows of the truth table for which F = 1, the minterm expansion of F'is
unique. Thus, we can prove that an equation is valid by finding the minterm expan-
sion of each side and showing that these expansions are the same.

— Show thata'c + b'c’ + ab = a'b’ + bc + ac'.
Example We will find the minterm expansion of each side by supplying the missing
variables. For the left side,
a'ecb+b")+b'c'(a+a)+ab(c+c)
=a'bc+a'b'c+ab'c’ +a'b'c" + abc + abc’
=my +my +my +my+ m; + mg
For the right side,
a'b'(c+c')+bc(a+a)+ac’'(b+b')
=a'b'c+a'b'c’ +abc+ a'bc+ abc’ + ab'c’
=m +my+ m;+my+ mg+ my
Because the two minterm expansions are the same, the equation is valid.

4.4 General Minterm and Maxterm Expansions

Table 4-2 represents a truth table for a general function of three variables. Each q;
is a constant with a value of 0 or 1. To completely specify a function, we must assign
values to all of the a;’s. Because each a; can be specified in two ways, there are 2°
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TABLE 4-2 ABC F

General Truth Table 000 ao
for Three Variables ¢ 1 a,
010 a,

011 as

100 a,

101 as

110 ag

111 a;

ways of filling the F column of the truth table; therefore, there are 256 different
functions of three variables (this includes the degenerate cases, F identically equal
to 0 and F identically equal to 1). For a function of n variables, there are 2" rows in
the truth table, and because the value of F can be 0 or 1 for each row, there are 2%"
possible functions of n variables.

From Table 4-2, we can write the minterm expansion for a general function of
three variables as follows:

7
F = agmy + aym, + am, + ++ - + a;m; = X, am; (4-12)
i=0

Note that if a; = 1, minterm m; is present in the expansion; if a; = 0, the correspon-
ding minterm is not present. The maxterm expansion for a general function of three
variables is
;
F = (ag+ Mo)(ay + My)(ay + My) -+ - (a7 + My) = [I(a; + M)~ (4-13)

i=0

Note that if a; = 1,a; + M; = 1, and M, drops out of the expansion; however, M;
is present if a; = 0.
From Equation (4-13), the minterm expansion of F' is

7 ! 7 7
F' = [H(“i + Mz)] = YaM] = Ya/m (4-14)
i=0 i=0 i=0

Note that all minterms which are not present in F are present in .
From Equation (4-12), the maxterm expansion of F’ is

F = [éaimi]’ = ﬁ(a; +ml) = ﬁ(a; + M) (4-15)

Note that all maxterms which are not present in F are present in F'. Generalizing
Equations (4-12), (4-13), (4-14), and (4-15) to n variables, we have
-1

-1
F= E am; = H (a; + M) (4-16)
i=0 i=0
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-1 -1
F'= Yam= [l + M) (4-17)
i=0 i=0

Given two different minterms of n variables, m; and m;, at least one variable
appears complemented in one of the minterms and uncomplemented in the other.
Therefore, if i # j, mm; = 0. For example, for n = 3, mym; = (A’B'C)(A’'BC) = 0.
Given minterm expansions for two functions

-1 -1
h= E am; f= 2 bjm; (4-18)
i=0 j=0
the product is
-1 -1 r—12'—1
fifh= ( > Cl,mi)( > bjmj> =2 abjmm;
i=0 j=0 i=0 j=0
-1
= Y abm; (because m;m; = O unless i = j) (4-19)
i=0
Note that all of the cross-product terms (i # j) drop out so that f; f, contains only
those minterms which are present in both f; and f,. For example, if
fi=2m(0,2,3,5,9,11) and fr=32m(0,3,9,11,13,14)
f1f2 = 2 m(o’ 37 9’ 11)

Table 4-3 summarizes the procedures for conversion between minterm and
maxterm expansions of F'and F’, assuming that all expansions are written as lists
of decimal numbers. When using this table, keep in mind that the truth table for
an n-variable function has 2" rows so that the minterm (or maxterm) numbers
range from 0 to 2" — 1. Table 4-4 illustrates the application of Table 4-3 to the
three-variable function given in Figure 4-1.

TABLE 4-3 DESIRED FORM
Conversion of Minterm Maxterm Minterm Maxterm
Forms Expansion Expansion Expansion Expansion
of F of F of F’ of F’
Minterm maxterm nos. | list minterms maxterm nos.
Expansion are those nos. | not present are the same
> of F not on the in F as minterm
o : ;
o) minterm list nos. of F
.
= for F
> Maxterm minterm nos. minterm nos. list maxterms
O Expansion are those nos. are the same not present
of F not on the as maxterm in F
maxterm list nos. of F
for F
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TABLE 4-4 DESIRED FORM
Application of Minterm Maxterm Minterm Maxterm
Table 4.3 Expansion Expansion Expansion Expansion

s of f of f of f’ of f’
o f=
Q s mG, 4,567 MO, 1,2) |Sm,1,2) | TIMG, 45,67
& F-
S IMO, 1,2 | Sm3, 45,6 7) s mo, 1, 2) | TTMG, 4, 5, 6, 7)

4.5 Incompletely Specified Functions

A large digital system is usually divided into many subcircuits. Consider the follow-
ing example in which the output of circuit N, drives the input of circuit N,.

Let us assume that the output of N; does not generate all possible combinations of
values for A, B, and C. In particular, we will assume that there are no combinations
of values for w, x, y, and z which cause A, B, and C to assume values of 001 or 110.
Hence, when we design N,, it is not necessary to specify values of F for ABC = 001
or 110 because these combinations of values can never occur as inputs to N,. For
example, F might be specified by Table 4-5.

The X’s in the table indicate that we don’t care whether the value of 0 or 1 is
assigned to F for the combinations ABC = 001 or 110. In this example, we don’t care
what the value of Fis because these input combinations never occur anyway. The func-
tion F'is then incompletely specified. The minterms A’B’C and ABC' are referred to as
don’t-care minterms, since we don’t care whether they are present in the function or not.

TABLE4-5 ABC
Truth Table with 000
Don’t-Cares 001

010
011
100
101
110
111

—\><00a0><—\‘m
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When we realize the function, we must specify values for the don’t-cares. It is
desirable to choose values which will help simplify the function. If we assign the
value 0 to both X’s, then

F=A'B'C'+ A'BC+ ABC=A'B'C’' + BC
If we assign 1 to the first X and 0 to the second, then
F=A'B'C' +A'B'C+A'BC+ABC=A'B' + BC
If we assign 1 to both X’s, then
F=A'B'C'+A'B'C+A'BC+ ABC' + ABC=A'B' + BC + AB

The second choice of values leads to the simplest solution.

We have seen one way in which incompletely specified functions can arise, and
there are many other ways. In the preceding example, don’t-cares were present
because certain combinations of circuit inputs did not occur. In other cases, all input
combinations may occur, but the circuit output is used in such a way that we do not
care whether it is 0 or 1 for certain input combinations.

When writing the minterm expansion for an incompletely specified function, we
will use m to denote the required minterms and d to denote the don’t-care
minterms. Using this notation, the minterm expansion for Table 4-5 is

F=2%m(0,3,7) + 2d(1, 6)

For each don’t-care minterm there is a corresponding don’t-care maxterm. For exam-
ple, if F = X (don’t-care) for input combination 001, i, is a don’t-care minterm and
M, is a don’t-care maxterm. We will use D to represent a don’t-care maxterm, and we
write the maxterm expansion of the function in Table 4-5 as

F=1IM(2,4,5) 11D (1,6)

which implies that maxterms M,, M,, and M; are present in F and don’t-care max-
terms M, and M, are optional.

4.6 Examples of Truth Table Construction

We will design a simple binary adder that adds two 1-bit binary numbers, a and b, to
Example 1 give a 2-bit sum. The numeric values for the adder inputs and output are as follows:

a b | Sum

00 00 (0+0=0)
01 01 0O+1=1)
10 01 (1+0=1)
11 10 (1+1=2)
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We will represent inputs to the adder by the logic variables A and B and the 2-bit
sum by the logic variables X and Y, and we construct a truth table:

Because a numeric value of 0 is represented by a logic 0 and a numeric value of 1
by a logic I, the 0’s and 1’s in the truth table are exactly the same as in the previous
table. From the truth table,

X=AB and Y=A'B+AB'=A®B

—— An adder is to be designed which adds two 2-bit binary numbers to give a 3-bit bina-
Example 2 ry sum. Find the truth table for the circuit. The circuit has four inputs and three out-

puts as shown:
TRUTH TABLE:

A — > i EEL R .

‘{B—» A B cD XYZ
] > ¥ N,

ﬁ{(,_, 00 00 | 000

o — —> 7 00 01 001

00 10 010

00 11 011

01 00 001

01 01 010

01 10 011

01 11 100

10 00 010

10 01 011

10 10 100

10 11 101

11 00 011

11 01 100

11 10 101

11 11 110

Inputs A and B taken together represent a binary number N,. Inputs C and D taken
together represent a binary number N,. Outputs X, Y, and Z taken together repre-
sent a binary number N;, where N; = N; + N, (+ of course represents ordinary
addition here).

In this example we have used A, B, C, and D to represent both numeric values
and logic values, but this should not cause any confusion because the numeric and
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logic values are the same. In forming the truth table, the variables were treated like

binary numbers having numeric values. Now we wish to derive the switching func-

tions for the output variables. In doing so, we will treat A, B, C, D, X, Y, and Z as

switching variables having nonnumeric values 0 and 1. (Remember that in this case

the 0 and 1 may represent low and high voltages, open and closed switches, etc.)
From inspection of the table, the output functions are

X(A, B, C, D) = 3 m(7,10, 11, 13, 14, 15)
Y(A, B, C,D) = 3 m(2,3,5,6,8,9, 12, 15)
Z(A, B, C,D) =3 m(1,3,4,6,9, 11,12, 14)

E————— Design an error detector for 6-3-1-1 binary-coded-decimal digits. The output (F) is
Example 3 (o be 1 iff the four inputs (A, B, C, D) represent an invalid code combination.

The valid 6-3-1-1 code combinations are listed in Table 1-2. If any other com-
bination occurs, this is not a valid 6-3-1-1 binary-coded-decimal digit, and the cir-
cuit output should be F =1 to indicate that an error has occurred. This leads to
the following truth table:

ABCD F
0000 0
0001 0
0010 1
0011 0
0100 0
0101 0
0110 1
0111 0
1000 0
1001 0
1010 1
1011 0
1100 0
1101 1
1110 1
1111 1

The corresponding output function is
F=3m(2,6,10,13,14,15)

=A'B'CD' + A'BCD' + AB'CD’' + ABCD' + ABC'D + ABCD
=A'CD' + ACD' + ABD = CD' + ABD
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The realization using AND and OR gates is

————=== The four inputs to a circuit (A, B, C, D) represent an 8-4-2-1 binary-coded-decimal
Example 4  digit. Design the circuit so that the output (Z) is 1 iff the decimal number repre-
sented by the inputs is exactly divisible by 3. Assume that only valid BCD digits
occur as inputs.

The digits 0, 3, 6, and 9 are exactly divisible by 3, so Z = 1 for the input combi-
nations ABCD = 0000, 0011, 0110, and 1001. The input combinations 1010, 1011,
1100, 1101, 1110, and 1111 do not represent valid BCD digits and will never occur,

so Z is a don’t-care for these combinations. This leads to the following truth table:

ABCD Zz
0000 1
0001 0
0010 0
0011 1
0100 0
0101 0
0110 1
0111 0
1000 0
1001 1
1010 X
1011 X
1100 X
1101 X
1110 X
1111 X

The corresponding output function is
Z =3%m(0,3,6,9) + 2 d(10,11,12,13,14,15)

In order to find the simplest circuit which will realize Z, we must choose some of the
don’t-cares (X’s) to be 0 and some to be 1. The easiest way to do this is to use a
Karnaugh map as described in Unit 5.
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4.7 Design of Binary Adders and Subtracters

In this section, we will design a parallel adder that adds two 4-bit unsigned binary
numbers and a carry input to give a 4-bit sum and a carry output (see Figure 4-2).
One approach would be to construct a truth table with nine inputs and five outputs
and then derive and simplify the five output equations. Because each equation
would be a function of nine variables before simplification, this approach would be
very difficult, and the resulting logic circuit would be very complex. A better method
is to design a logic module that adds two bits and a carry, and then connect four of
these modules together to form a 4-bit adder as shown in Figure 4-3. Each of the
modules is called a full adder. The carry output from the first full adder serves as the
carry input to the second full adder, etc.

FIGURE 4-2 S, S, S, So
Parallel Adder
for 4-Bit Binary T T T
Numbers .
4-bit
C, <— Parallel <— C
Adder

ininini

3 AZBZ AIBI A(lB()

FIGURE 4-3 0 1 1 0
Parallel Adder S;T SZT S T S()T
Composed of Four
Full Adders \
_ G Full 4C" Full 4C2 Full Ci Full Co _
: Adder [ 0 Adder | : Adder : Adder 0

>
—>
—>
oo

r}
—>
—>
o

N

=
—
—>
=

=
—>
—>
>

end-around carry for 1's complement

In the example of Figure 4-3, we perform the following addition:

10110  (carries)
1011
+ 1011

10110

The full adder to the far right adds A, + By + C, =1+ 1+ 0 to give a sum
of 10,, which gives a sum S, = 0 and a carry out of C; = 1. The next full adder adds
Ai+B,+C =1+1+1= 11,, which gives a sum S; = 1 and a carry C, = 1. The
carry continues to propagate from right to left until the left cell produces a final
carry of C, = 1.
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X —> il L > XY cin Cout Sum
V> Adder g 0 0 0 0 0
C, —>] —> Sum 0 0 1 0 1
0o 1 O 0 1
0 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 4-4 gives the truth table for a full adder with inputs X, Y, and C;,. The out-
puts for each row of the table are found by adding up the input bits (X + Y + C;,) and
splitting the result into a carry out (C;, ;) and a sum bit (S;). For example, in the 101 row
1+0+1=10,s0 C;;; = 1andS; = 0. Figure 4-5 shows the implementation of the full
adder using gates. The logic equations for the full adder derived from the truth table are

Sum = X'Y'Cy, + X'YC), + XY'Cl, + XYC,,

= X'(Y'C,, + YC},) + X(Y'C, + YC,,) (4-20)
=X(Y®C,)+XY®C,)=XOY®C,

C,u=X'YC,, + XY'C,, + XYC}, + XYC,,
= (X'YC,, + XYC,,) + (XY'Cy, + XYC,) + (XYCl + XYC,)  (4-21)

= YCin + Xcin + XY

Note that the term XY C;, was used three times in simplifying C, . Figure 4-5 shows
the logic circuit for Equations (4-20) and (4-21).

X —

yV —

X v —]
y Sum Cout
(.111 (.II]

v —

c.. —

in

Although designed for unsigned binary numbers, the parallel adder of Figure 4-3
can also be used for signed binary numbers with negative numbers expressed in
complement form. When 2’s complement is used, the last carry (C,) is discarded, and
there is no carry into the first cell. Because C, = 0, the equations for the first cell
may be simplified to

SOZA()@BOandCl:AoBO

When 1’s complement is used, the end-around carry is accomplished by connecting
C, to the C, input, as shown by the dashed line in Figure 4-3.

When adding signed binary numbers with negative numbers expressed in com-
plement form, the sign bit of the sum is wrong when an overflow occurs. That is, an
overflow has occurred if adding two positive numbers gives a negative result, or
adding two negative numbers gives a positive result. We will define a signal V that is
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1 when an overflow occurs. For Figure 4-3, we can use the sign bits of A, B,and S (the
sum) to determine the value of V:

V= A3’B3,S3 + A3B3S3’ (4'22)

If the number of bits is large, a parallel binary adder of the type shown in Figure
4-4 may be rather slow because the carry generated in the first cell might have to
propagate all of the way to the last cell. Other types of adders, such as a carry-look-
ahead adder,” may be used to speed up the carry propagation.

Subtraction of binary numbers is most easily accomplished by adding the com-
plement of the number to be subtracted. To compute A — B, add the complement
of B to A. This gives the correct answer because A + (—B) = A — B. Either 1’s or
2’s complement is used depending on the type of adder employed.

The circuit of Figure 4-6 may be used to form A — B using the 2’s complement
representation for negative numbers. The 2’s complement of B can be formed by
first finding the 1’s complement and then adding 1. The 1’s complement is formed
by inverting each bit of B, and the addition of 1 is effectively accomplished by put-
ting a 1 into the carry input of the first full adder.

FIGURE 4-6 S, S5 S5 S
Binary Subtracter T T T T
Using Full Adders

. Full 4 Full ‘3 Full €2 Full
C < l«— ¢ =

? Adder Adder Adder Adder “l
(Ignore last

carry)

B} B; B Bj
A, B, Ay B A, B, A, B,

Example p_ 011 (+3)
The adder output is 0110 (+6)
+1100 (1’s complement of 3)
+ 1 (first carry input)
(1) 0011=3=6-3

Alternatively, direct subtraction can be accomplished by employing a full sub-
tracter in a manner analogous to a full adder. A block diagram for a parallel subtracter
which subtracts Y from X is shown in Figure 4-7. The first two bits are subtracted in the
rightmost cell to give a difference d;, and a borrow signal (b, = 1) is generated if it is
necessary to borrow from the next column. A typical cell (cell i) has inputs x;, y;, and b;,
and outputs b;,; and d;. An input b, = 1 indicates that we must borrow 1 from x; in that
cell, and borrowing 1 from x; is equivalent to subtracting 1 from x;. In cell i, bits b; and

“See, for example, J. F., Wakerly, Digital Design Principles and Practices, 4th ed (Prentice Hall, 2006).
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FIGURE 4-7 d, q d, d,
Parallel Subtracter T T T T
b Full by iy Full bi b Full by Full b =0
Subtracter Subtracter Subtracter Subtracter !
T TR R
Xn Yn Xi Yi 29) Y2 X hJ|
TABLE 4-6 X y,' b,' b,' +1 d,‘
Truth Table for 000 00
Binary Full 001 11
Subtracter 010 11
011 10
100 01
101 00
110 00
111 11

4.1

y; are subtracted from x; to form the difference d;, and a borrow signal (b;,; = 1) is gen-

erated if it is necessary to borrow from the next column.
Table 4-6 gives the truth table for a binary full subtracter. Consider the follow-
ing case, where x; = 0,y; = 1 and b; = 1:

Column j Column j
Before After
Borrow Borrow
X; 0 10
—b; -1 —1
=7 -1 -1
d; 0 =1

Note that in column i, we cannot immediately subtract y; and b, from x;. Hence, we
must borrow from column i + 1. Borrowing 1 from column i + 1 is equivalent to set-
ting b;,; to 1 and adding 10 (2,,) to x;. We then have d; = 10 — 1 — 1 = 0. Verify that
Table 4-6 is correct for the other input combinations and use it to work out several
examples of binary subtraction.

Problems

Represent each of the following sentences by a Boolean equation.

(a) The company safe should be unlocked only when Mr. Jones is in the office or
Mr. Evans is in the office, and only when the company is open for business, and
only when the security guard is present.
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(b) You should wear your overshoes if you are outside in a heavy rain and you are
wearing your new suede shoes, or if your mother tells you to.

(c) You should laugh at a joke if it is funny, it is in good taste, and it is not offensive
to others, or if it is told in class by your professor (regardless of whether it is
funny and in good taste) and it is not offensive to others.

(d) The elevator door should open if the elevator is stopped, it is level with the
floor, and the timer has not expired, or if the elevator is stopped, it is level with
the floor, and a button is pressed.

4.2 A flow rate sensing device used on a liquid transport pipeline functions as follows.
The device provides a 5-bit output where all five bits are zero if the flow rate is less
than 10 gallons per minute. The first bit is 1 if the flow rate is at least 10 gallons
per minute; the first and second bits are 1 if the flow rate is at least 20 gallons per
minute; the first, second, and third bits are 1 if the flow rate is at least 30 gallons per
minute; and so on. The five bits, represented by the logical variables A, B, C, D, and
E, are used as inputs to a device that provides two outputs Y and Z.

(a) Write an equation for the output Y if we want Y to be 1 iff the flow rate is less
than 30 gallons per minute.

(b) Write an equation for the output Z if we want Z to be 1 iff the flow rate is at
least 20 gallons per minute but less than 50 gallons per minute.

4.3 Given F; = 2 m(0,4,5,6) and F, = X m(0, 3, 6, 7) find the minterm expression for
F| + F,. State a general rule for finding the expression for F; + F, given the
minterm expansions for F; and F,. Prove your answer by using the general form of
the minterm expansion.

4.4 (a) How many switching functions of two variables (x and y) are there?
(b) Give each function in truth table form and in reduced algebraic form.

4.5 A combinational circuit is divided into two subcircuits N; and N, as shown. The
truth table for N; is given. Assume that the input combinations ABC = 110 and
ABC = 010 never occur. Change as many of the values of D, E, and F to don’t-cares
as you can without changing the value of the output Z.

. N, A B C D E F

: 0 0 O 1 1 0

A —>] £ 0 0 1 0 0 1
N > 0 1 0 0 1 1
0 1 1 1 1 1

C—> F ——— 1 0 0 1 0 0
> 1 0 1 1 0 1

1 1 0 0 1 0

1 1 1 0 0 O
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4.6 Work (a) and (b) with the following truth table:

,m s s 000000
—_ =00 = = 00|
—o-—-0—=0=0|nNn

maXoo0oOX-=|m

(a) Find the simplest expression for F, and specify the values of the don’t-cares that
lead to this expression.

(b) Repeat (a) for G. (Hint: Can you make G the same as one of the inputs by prop-
erly choosing the values for the don’t-care?)

4.7 Each of three coins has two sides, heads and tails. Represent the heads or tails sta-
tus of each coin by a logical variable (A for the first coin, B for the second coin, and
C for the third) where the logical variable is 1 for heads and 0 for tails. Write a logic
function F(A, B, C) which is 1 iff exactly one of the coins is heads after a toss of the
coins. Express F'
(a) as a minterm expansion.
(b) as a maxterm expansion.

4.8 A switching circuit has four inputs as shown. A and B represent the first and second
bits of a binary number N;. C and D represent the first and second bits of a binary num-
ber N,.The output is to be 1 only if the product N, X N, is less than or equal to 2.
(a) Find the minterm expansion for F
(b) Find the maxterm expansion for F.
Express your answers in both decimal notation and algebraic form.

{A—»
1

C —>
Nz{
D —>

4.9 Given: F(a, b,c) = abc’ + b'.
(a) Express F as a minterm expansion. (Use m-notation.)
(b) Express F as a maxterm expansion. (Use M-notation.)
(c) Express F' as a minterm expansion. (Use m-notation.)
(d) Express F' as a maxterm expansion. (Use M-notation.)
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4.10 Work Problem 4.9 using:
Fla,b,c,d)=(a+b+d)(d +c)(@ +b +c)(a+b+c +d)

4.11 (a) Implement a full subtracter using a minimum number of gates.
(b) Compare the logic equations for the full adder and full subtracter. What is the
relation between s; and d;? Between ¢;,; and b, ,?

4.12 Design a circuit which will perform the following function on three 4-bit numbers:
(XXX X + Yo YY) — Z,2,2, Z,

It will give a result S55,5,S), a carry, and a borrow. Use eight full adders and any other
type of gates. Assume that negative numbers are represented in 2’s complement.

4.13 A combinational logic circuit has four inputs (A, B, C, and D) and one output Z.
The output is 1 iff the input has three consecutive 0’s or three consecutive 1’s. For
example,if A =1,B=0,C=0,and D =0,then Z=1,butif A =0,B=1,C=0,
and D = 0, then Z = 0. Design the circuit using one four-input OR gate and four
three-input AND gates.

4.14 Design a combinational logic circuit which has one output Z and a 4-bit input
ABCD representing a binary number. Z should be 1 iff the input is at least 5, but is
no greater than 11. Use one OR gate (three inputs) and three AND gates (with no
more than three inputs each).

4.15 A logic circuit realizing the function f has four inputs A, B, C, and D. The three
inputs A, B, and C are the binary representation of the digits 0 through 7 with A
being the most-significant bit. The input D is an odd-parity bit, i.e., the value of D
is such that A, B, C, and D always contain an odd number of 1’s. (For example, the
digit 1 is represented by ABC = 001 and D = 0, and the digit 3 is represented by
ABCD = 0111.) The function f has value 1 if the input digit is a prime number. (A
number is prime if it is divisible only by itself and 1; 1 is considered to be prime
and 0 is not.)

(a) List the minterms and don’t-care minterms of f in algebraic form.
(b) List the maxterms and don’t-care maxterms of fin algebraic form.

4.16 A priority encoder circuit has four inputs, x3, x,, x;, and x,,. The circuit has three out-
puts: z, y;, and y,. If one of the inputsis 1,z is 1 and y; and y, represent a 2-bit, bina-
ry number whose value equals the index of the highest numbered input that is 1. For
example, if x, is 1 and x; is 0, then the outputs are z = 1 and y; = 1 and y, = 0. If all
inputs are 0, z = 0 and y,; and y, are don’t-cares.

(a) List in decimal form the minterms and don’t-care minterms of each output.
(b) List in decimal form the maxterms and don’t-care maxterms of each output.

4.17 The 9’s complement of a decimal digit d (0 to 9) is defined to be 9 — d. A logic
circuit produces the 9’s complement of an input digit where the input and output
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digits are represented in BCD. Label the inputs A, B, C, and D, and label the out-
puts W, X, Y and Z.

(a) Determine the minterms and don’t-care minterms for each of the outputs.

(b) Determine the maxterms and don’t-care maxterms for each of the outputs.

4.18 Repeat Problem 4.17 for the case where the input and output digits are represented
using the 4-2-2-1 weighted code. (If only one weight of 2 is required for decimal dig-
its less than 5, select the rightmost 2. In addition, select the codes so that W = A’,
X=B',Y=C',and Z = D'. (There are two possible codes with these restrictions.)

4.19 Each of the following sentences has two possible interpretations depending on

whether the AND or OR is done first. Write an equation for each interpretation.

(a) The buzzer will sound if the key is in the ignition switch, and the car door is
open, or the seat belts are not fastened.

(b) You will gain weight if you eat too much, or you do not exercise enough, and
your metabolism rate is too low.

(c) The speaker will be damaged if the volume is set too high, and loud music is
played, or the stereo is too powerful.

(d) The roads will be very slippery if it snows, or it rains, and there is oil on the road.

4.20 A bank vault has three locks with a different key for each lock. Each key is
owned by a different person. To open the door, at least two people must insert
their keys into the assigned locks. The signal lines A, B, and C are 1 if there is a
key inserted into lock 1, 2, or 3, respectively. Write an equation for the variable Z
which is 1 iff the door should open.

4.21 A paper tape reader used as an input device to a computer has five rows of holes as
shown. A hole punched in the tape indicates a logic 1, and no hole indicates a logic 0.
As each hole pattern passes under the photocells, the pattern is translated into logic
signals on lines A, B, C, D, and E. All patterns of holes indicate a valid character with
two exceptions. A pattern consisting of none of the possible holes punched is not used
because it is impossible to distinguish between this pattern and the unpunched space
between patterns. An incorrect pattern punched on the tape is erased by punching all
five holes in that position. Therefore, a valid character punched on the tape will have
at least one hole but will not have all five holes punched.

(a) Write an equation for a variable Z which is 1 iff a valid character is being read.
(b) Write an equation for a variable Y which is 1 iff the hole pattern being read has
holes punched only in rows C and E.

Photocells
Variables
o o . . . —_ A
° ° ° — 3
° o | o ° —_C
° ° ° . —_ )
° . . . . . —_—
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4.22 A computer interface to a line printer has seven data lines that control the move-
ment of the paper and the print head and determine which character to print. The
data lines are labeled A, B, C, D, E, F, and G, and each represents a binary 0 or 1.
When the data lines are interpreted as a 7-bit binary number with line A being
the most significant bit, the data lines can represent the numbers 0 to 127, The
number 13, is the command to return the print head to the beginning of a line,
the number 10,, means to advance the paper by one line, and the numbers 32, to
127,, represent printing characters.

(a) Write an equation for the variable X which is 1 iff the data lines indicate a com-
mand to return the print head to the beginning of the line.

(b) Write an equation for the variable Y which is 1 iff there is an advance paper
command on the data lines.

(c) Write an equation for the variable Z which is 1 iff the data lines indicate a print-
able character. (Hint: Consider the binary representations of the numbers 0-31
and 32-127 and write the equation for Z with only two terms.)

4.23 Given F, = 11 M(0,4,5,6) and F, = I1 M(0,4,7),find the maxterm expansion for F|F,.
State a general rule for finding the maxterm expansion of F|F, given the maxterm
expansions of F; and F,.

Prove your answer by using the general form of the maxterm expansion.

4.24 Given F, =11 M(0, 4,5, 6) and F, = I1 M(0, 4, 7), find the maxterm expansion
for F, + F,.
State a general rule for finding the maxterm expansion of F; + F,, given the max-
term expansions of F| and F,.
Prove your answer by using the general form of the maxterm expansion.

4.25 Four chairs are placed in a row:
D]

Each chair may be occupied (1) or empty (0). Give the minterm and maxterm

expansion for each logic function described.

(a) F(A, B, C, D) is 1 iff there are no adjacent empty chairs.

(b) G(A, B, C, D) is 1 iff the chairs on the ends are both empty.

(c) H(A, B, C, D) is 1 iff at least three chairs are full.

(d) J(A, B, C, D) is 1 iff there are more people sitting in the left two chairs than in
the right two chairs.

4.26 Four chairs (A, B, C, and D) are placed in a circle: A next to B, B next to C, C next
to D, and D next to A. Each chair may be occupied (1) or empty (0). Give the
minterm and maxterm expansion for each of the following logic functions:

(a) F(A, B, C, D) is 1 iff there are no adjacent empty chairs.
(b) G(A, B, G, D) is 1 iff there are at least three adjacent empty chairs.
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(c) H(A, B, C, D) is 1 iff at least three chairs are full.
(d) J(A, B, C, D) is 1 iff there are more people sitting in chairs A and B than chairs
Cand D.

4.27 Given f(a, b, c) = a(b + ¢').
(a) Express f as a minterm expansion (use m-notation).
(b) Express fas maxterm expansion (use M-notation).
(c) Express f’ as a minterm expansion (use m-notation).
(d) Express f’ as a maxterm expansion (use M-notation).

4.28 Work Problem 4.27 using f(a, b, ¢, d) = acd + bd' + a’c'd + ab’cd + a'b'cd’.

4.29 Find both the minterm expansion and maxterm expansion for the following func-
tions, using algebraic manipulations:
(a) (A,B,C,D) =AB + A'CD
() f(A,B,CD)=(A+B+D")A +C)(C+ D)

4.30 Given F'(A, B, C,D) =% m(0,1,2,6,7,13,15).
(a) Find the minterm expansion for F (both decimal and algebraic form).
(b) Find the maxterm expansion for F (both decimal and algebraic form).

4.31 Repeat Problem 4.30 for F'(A, B, C, D) =3 m(1,2,5, 6,10, 15).

4.32 Work parts (a) through (d) with the given truth table.

A B C | FR /b F5 F
0 0 0 1T 1 0 1
0 0 1 X 0 0 0
010 [0 1 X O
0 1 1 00 1 1
100 [0 1 1 1
1.0 1 X 0 1 0
1 1.0 | 0 X X X
11 1 1T X 1 X

(a) Find the simplest expression for F;, and specify the values for the don’t-cares
that lead to this expression.

(b) Repeat for F,.

(c) Repeat for F;.

(d) Repeat for F,.
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4.33 Work Problem 4.5 using the following circuits and truth table. Assume that the input
combinations of ABC = 011 and ABC = 110 will never occur.

N, A B C | D E F

M H ; 0o 00 | 1 1 0

4] > ’_D;_,Z 001 |0 10
E 0 1 0 0 0 1

B> > 0 1 1 0 0 O
> - LDJ 1 00/ 0 1 0
> 1 0 1 0 0 1

1 1 0 0 0 1

11 1 1 0 1

4.34 Work Problem 4.7 for the following logic functions:
(a) G|(A, B, C) is 1iff all the coins landed on the same side (heads or tails).
(b) Gy(A, B, C) is 1 iff the second coin landed on the same side as the first coin.

4.35 A combinational circuit has four inputs (A, B, C, D) and three outputs (X, Y, Z).
XYZ represents a binary number whose value equals the number of 1’s at the input.
For example if ABCD = 1011, XYZ = 011.
(a) Find the minterm expansions for X, Y, and Z.
(b) Find the maxterm expansions for Y and Z.

4.36 A combinational circuit has four inputs (A, B, C, D) and four outputs (W, X, Y, Z).
WXYZ represents an excess-3 coded number whose value equals the number of 1’s
at the input. For example, if ABCD = 1101, WXYZ = 0110.
(a) Find the minterm expansions for X, Y, and Z.
(b) Find the maxterm expansions for Y and Z.

4.37 A combinational circuit has four inputs (A, B, C, D), which represent a binary-
coded-decimal digit. The circuit has two groups of four outputs—S, 7, U, V, and
W, X, Y, Z. Each group represents a BCD digit. The output digits represent a
decimal number which is five times the input number. For example, if ABCD =
0111, the outputs are 0011 0101. Assume that invalid BCD digits do not occur
as inputs.
(a) Construct the truth table.
(b) Write down the minimum expressions for the outputs by inspection of the truth

table. (Hint: Try to match output columns in the table with input columns.)

4.38 Work Problem 4.37 where the BCD outputs represent a decimal number that is 1
more than four times the input number. For example, if ABCD = 0011, the outputs
are 0001 0011.

4.39 Design a circuit which will add a 4-bit binary number to a 5-bit binary number. Use
five full adders. Assume negative numbers are represented in 2’s complement.
(Hint: How do you make a 4-bit binary number into a 5-bit binary number, with-
out making a negative number positive or a positive number negative? Try writing
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down the representation for —3 as a 3-bit 2’s complement number, a 4-bit 2’s com-
plement number, and a 5-bit 2’s complement number. Recall that one way to find
the 2’s complement of a binary number is to complement all bits to the left of
the first 1.)

4.40 A half adder is a circuit that adds two bits to give a sum and a carry. Give the truth
table for a half adder, and design the circuit using only two gates. Then design a cir-
cuit which will find the 2’s complement of a 4-bit binary number. Use four half
adders and any additional gates. (Hint: Recall that one way to find the 2’s comple-
ment of a binary number is to complement all bits, and then add 1.)

4.41 (a) Write the switching function f(x, y) = x + y as a sum of minterms and as a prod-
uct of maxterms.

(b) Consider the Boolean algebra of four elements {0, 1, a, b} specified by the
following operation tables and the Boolean function f(x, y) = ax + by where a
and b are two of the elements in the Boolean algebra. Write f(x, y) in a sum-of-
minterms form.

(c) Write the Boolean function of part (b) in a product-of-maxterms form.

(d) Give a table of combinations for the Boolean function of Part (b). (Note: The
table of combinations has 16 rows, not just 4.)

(e) Which four rows of the table of combinations completely specify the function
of Part (b)? Verify your answer.

ooV = O
v oo =

Cw o4
cov =ol|o
I N
TR Y )
o--=olo
LU ~Oe
oooo:
VU m0O|=
oo v oo
cooT ol

4.42 (a) If m; and m, are minterms of n variables, prove that m; + m, = m; @ m,.
(b) Prove that any switching function can be written as the exclusive-OR sum of
products where each product does not contain a complemented literal.
[Hint: Start with the function written as a sum of minterms and use Part (a).]
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Objectives

1. Given a function (completely or incompletely specified) of three to five
variables, plot it on a Karnaugh map. The function may be given in
minterm, maxterm, or algebraic form.

2. Determine the essential prime implicants of a function from a map.

3. Obtain the minimum sum-of-products or minimum product-of-sums form
of a function from the map.

4. Determine all of the prime implicants of a function from a map.

Understand the relation between operations performed using the map
and the corresponding algebraic operations.

116
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Study Guide

In this unit we will study the Karnaugh (pronounced “car-no”) map. Just about any
type of algebraic manipulation we have done so far can be facilitated by using the
map, provided the number of variables is small.

I.  Study Section 5.1, Minimum Forms of Switching Functions.

(a) Define a minimum sum of products.

(b) Define a minimum product of sums.

2. Study Section 5.2, Two- and Three-Variable Karnaugh Maps.

(a) Plot the given truth table on the map. Then, loop two pairs of 1’s on the
map and write the simplified form of F.

PQ | F
00 | 1
01 | 1
10 | 0
11 1

Now simplify F algebraically and verify that your answer is correct.

(b) F(a, b, ¢) is plotted below. Find the truth table for F.

abc F

000
001
010
011

_ -
_ -0
—_0 =
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(c) Plot the following functions on the given Karnaugh maps:

F(R,S,T)=3m(0,1,5,6) FxR,S,T)=T1M2,3,4,7)

Why are the two maps the same?
(d) Plot the following function on the given map:
fee.y,2) =2 +x'z +yz

Do not make a minterm expansion or a truth table before plotting.

(e) For a three-variable map, which squares are “adjacent” to square 2?

(f) What theorem is used when two terms in adjacent squares are combined?

(g) What law of Boolean algebra justifies using a given 1 on a map in two
or more loops?
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(h) Each of the following solutions is not minimum.

01 U f=ab’" + abc 01 1 g=a’ +ab
11 @ 11 1 m
10 10 \\l/ U

In each case, change the looping on the map so that the minimum solution
is obtained.

(i) Work Problem 5.3.

(j) Find two different minimum sum-of-products expressions for the function
G, which is plotted below.

a a
be 0 1 be 0 1
00 1 1 0] 1 1
01 1 01 1
G=
1] 1 1 1l 1 1
0l 1 0l 1
G=
G G

Study Section 5.3, Four-Variable Karnaugh Maps.

(a) Note the locations of the minterms on three- and four-variable maps
[Figures 5-3(b) and 5-10]. Memorize this ordering. This will save you a lot
of time when you are plotting Karnaugh maps.

This ordering is valid only for the order of the variables given. If we label
the maps as shown below, fill in the locations of the minterms:
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(b) Given the following map, write the minterm and maxterm expansions for Fin
decimal form:

(c) Plot the following functions on the given maps:

O fw,x,v,2) =2%m(0,1,2,5,7,8,9,10, 13, 14)
Q) fw,x,y,2) =x'z" +y'z + wxz + wyz

Your answers to (1) and (2) should be the same.
(d) For a four-variable map, which squares are adjacent to square 14?

To square 8? -

(e) When we combine two adjacent 1’s on a map, this corresponds to applying
the theorem xy’ + xy = x to eliminate the variable in which the two terms
differ. Thus, looping the two 1’s as indicated on the following map is equiv-
alent to combining the corresponding minterms algebraically:

ab
d\ 00 01 11 10

00 1

o] D (-

- a’b’c’d+ab’c’d=b"c’d

[The term b’c’d can be read directly from the
map because it spans the first and last columns
(b") and because it is in the second row (¢’d).]
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Loop two other pairs of adjacent 1’s on this map and state the algebraic
equivalent of looping these terms. Now read the loops directly off the
map and check your algebra.

(f) When we combine four adjacent 1’s on a map (either four in a line or four
in a square) this is equivalent to applying xy + xy’ = x three times:

Loop the other four 1’s on the map and state the algebraic equivalent.
(g) For each of the following maps, loop a minimum number of terms which
will cover all of the 1’s.

ab ab
cd . 00 01 11 10 cd . 00 01 11 10
00 1 1 00 1
01 1 1 1 01 1
11 1 1 11 1 1 1 1
10 1 10 1 1
hi h

(For each part you should have looped two groups of four 1’s and two
groups of two 1’s).

Write down the minimum sum-of-products expression for f; and f, from
these maps.

fi=
L=

(h) Why is it not possible to combine three or six minterms together rather
than just two, four, eight, etc.?
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(i)

()

Note the procedure for deriving the minimum product of sums from the
map. You will probably make fewer mistakes if you write down f’ as a sum
of products first and then complement it, as illustrated by the example in
Figure 5-14.

Work Problems 5.4 and 5.5.

4. Study Section 5.4, Determination of Minimum Expressions Using Essential
Prime Implicants.

(a)

(b)

For the map of Figure 5-15, list three implicants of F other than those which
are labeled.

For the same map, is ac’'d’ a prime implicant of F?

Why or why not?

For the given map, are any of the circled AB

terms prime implicants? cD 00 01 11 10
Why or why not? 00 q

01 1 ({1 1J)
mioiio

1
1

10 E:)

5. Study Figure 5-18 carefully and then answer the following questions for the
given map:

(a)
(b)

(©)

(d)
(e)

(f)
€3]
(h)

(i)

How many 1’s are adjacent to m,? AB
y ) 0 cpN\. 00 01 11 10

Are all these 1’s covered by a single ol 1 1 1
prime implicant? 0 4 8

From your answer to (b), can you oryp 1 1
determine whether B'C’ is essential?

How many 1’s are adjacent to m4y? 3 7

Are all of these 1’s covered by a single 0] 1 1 1
prime implicant?

From your answer to (e),is B'C’ essential?
How many 1’s are adjacent to m,?
Why is A’ C essential?

Find two other essential prime implicants and tell which minterm makes
them essential.
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6. (a) How do you determine if a prime implicant is essential using a Karnaugh
map?

(b) For the following map, why is A'B’ not essential?

Why is BD' essential? AB

cpN\. 00 0l 11 10
Is A’D’ essential? Why? ol 1 1 1
Is BC’ essential? Why? orf 1 1 1
Is B'CD essential? Why? 1] 1 1
Find the minimum sum of products. 10] 1 1 1

(¢) Work Programmed Exercise 5.1.
(d) Listall I’s and X’s that are adjacent to 1,,.

Why is A’C’ an essential prime implicant?

List all 1’s and X’s adjacent to 1;s.
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(e)
()

(b)

Based on this list, why can you not find an essential prime implicant that
covers 1;5?

Does this mean that there is no essential prime implicant that covers 1,5?
What essential prime implicant covers 1;;?

Can you find an essential prime implicant that covers 1,,? Explain.

Find two prime implicants that cover 1,,.

Give two minimum expressions for F.

Work Problem 5.6.

If you have a copy of the LogicAid program available, use the Karnaugh
map tutorial mode to help you learn to find minimum solutions from
Karnaugh maps. This program will check your work at each step to make
sure that you loop the terms in the correct order. It also will check your
final answer. Work Problem 5.7 using the Karnaugh map tutor.

In Example 4, page 103, we derived the following function:

Z =3m(0,3,6,9) + 3d(10,11, 12,13, 14, 15)

Plot Z on the given map using X’s to represent don’t-care terms.

Show that the minimum sum of products is
Z =A'B'C'D'+ B'CD + AD + BCD'

Which four don’t-care minterms were assigned the value 1 when forming
your solution?
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(¢) Show that the minimum product of sums for Z is
Z=MB+C)(B+D'")A'+D)A+ C+D')YB+ C'+ D)

Which one don’t-care term of Z was assigned the value 1 when forming
your solution?

(d) Work Problem 5.8.

8. Study Section 5.5, Five-Variable Karnaugh Maps.

(a) The figure below shows a three-dimensional five-variable map. Plot the 1’s
and loops on the corresponding two-dimensional map, and give the mini-
mum sum-of-products expression for the function.

BC
pEN. 00 01 11 10 BC
— DE 00 01 11 10
00 /7777 ) /
A=1 7/ i( 1 1 }’/
7/
01 "1 /1 //I( / 00
—— I__J
11 | |
| ' /
10 / / / 01
- :
. 1
patysy / %
A=0 7 H

(b) On a five-variable map (Figure 5-21), what are the five minterms adja-
cent to minterm 247

(c) Work through all of the examples in this section carefully and make sure
that you understand all of the steps.

(d) Two minimum solutions are given for Figure 5-24. There is a third mini-
mum sum-of-products solution. What is it?

(e) Work Programmed Exercise 5.2.
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(f)
BC
DE 00 01 11 10
16 20 28 24
X X 1
00
0 4 12 8
17 21 29 25
1
01 X
A 1
1 1 5 13 9
19 23 1 27
4 X 1
11
1 1 1 X
7 15 11
18 22 30 26
1 1 X X
10
2 6 14 10

Find the three 1’s and X’s adjacent to 1,5. Can these all be looped with a
single loop?

Find the 1’s and X’s adjacent to 1,,. Loop the essential prime implicant
that covers 1,,.

Find the 1’s and X’s adjacent to 1;. Loop the essential prime implicant that
covers 1.

Can you find an essential prime implicant that covers 1,,? Explain.

Find and loop two more essential prime implicants.
Find three ways to cover the remaining 1 on the map and give the corre-
sponding minimum solutions.

(g) If you have the LogicAid program available, work Problem 5.9, using the
Karnaugh map tutor.

9. Study Section 5.6, Other Uses of Karnaugh Maps. Refer to Figure 5-8 and note
that a consensus term exists if there are two adjacent, but nonoverlapping prime
implicants. Observe how this principle is applied in Figure 5-26.

10. Work Problems 5.10, 5.11, 5.12, and 5.13 When deriving the minimum solution
from the map, always write down the essential prime implicants first. If you do not,
it is quite likely that you will not get the minimum solution. In addition, make sure

you can find all of the prime implicants from the map [see Problem 5.10(b)].

11. Review the objectives and take the readiness test.
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Switching functions can generally be simplified by using the algebraic techniques
described in Unit 3. However, two problems arise when algebraic procedures are
used:

1. The procedures are difficult to apply in a systematic way.
2. It is difficult to tell when you have arrived at a minimum solution.

The Karnaugh map method studied in this unit and the Quine-McCluskey proce-
dure studied in Unit 6 overcome these difficulties by providing systematic methods
for simplifying switching functions. The Karnaugh map is an especially useful tool
for simplifying and manipulating switching functions of three or four variables, but
it can be extended to functions of five or more variables. Generally, you will find
the Karnaugh map method is faster and easier to apply than other simplification
methods.

5.1 Minimum Forms of Switching Functions

When a function is realized using AND and OR gates, the cost of realizing the func-
tion is directly related to the number of gates and gate inputs used. The Karnaugh
map techniques developed in this unit lead directly to minimum cost two-level
circuits composed of AND and OR gates. An expression consisting of a sum of
product terms corresponds directly to a two-level circuit composed of a group
of AND gates feeding a single OR gate (see Figure 2-5). Similarly, a product-of-
sums expression corresponds to a two-level circuit composed of OR gates feeding
a single AND gate (see Figure 2-6). Therefore, to find minimum cost two-level
AND-OR gate circuits, we must find minimum expressions in sum-of-products or
product-of-sums form.

A minimum sum-of-products expression for a function is defined as a sum of
product terms which (a) has a minimum number of terms and (b) of all those
expressions which have the same minimum number of terms, has a minimum num-
ber of literals. The minimum sum of products corresponds directly to a minimum
two-level gate circuit which has (a) a minimum number of gates and (b) a minimum
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number of gate inputs. Unlike the minterm expansion for a function, the minimum
sum of products is not necessarily unique; that is, a given function may have two dif-
ferent minimum sum-of-products forms, each with the same number of terms and
the same number of literals. Given a minterm expansion, the minimum sum-of-
products form can often be obtained by the following procedure:

1. Combine terms by using XY’ + XY = X. Do this repeatedly to eliminate as many
literals as possible. A given term may be used more than once because X + X = X.
2. Eliminate redundant terms by using the consensus theorem or other theorems.

Unfortunately, the result of this procedure may depend on the order in which terms are
combined or eliminated so that the final expression obtained is not necessarily minimum.

—= Find a minimum sum-of-products expression for
Example
F(a,b,c) =2m(0,1,2,5,6,7)

F= ab'¢c" + ab'c+ a'bc" + ab'c + abc’ + abc
=ab + b'c + bc + ab (5-1)

None of the terms in the above expression can be eliminated by consensus. However,
combining terms in a different way leads directly to a minimum sum of products:

F= ab'c + ab'c + a'bc’ + ab’'c + abc’ + abc

= a'b’ + bc’ + ac (5-2)

A minimum product-of-sums expression for a function is defined as a product
of sum terms which (a) has a minimum number of factors, and (b) of all those
expressions which have the same number of factors, has a minimum number of lit-
erals. Unlike the maxterm expansion, the minimum product-of-sums form of a
function is not necessarily unique. Given a maxterm expansion, the minimum prod-
uct of sums can often be obtained by a procedure similar to that used in the mini-
mum sum-of-products case, except that the theorem (X + Y )(X + Y') = X is
used to combine terms.

I
Example

(A+B +C+D)YA+B +C +D)YA+B +C +D)A +B +C +D)A+B+C +D)A +B+C +D)

—A+B +D) (AFB +C) (B +C+D) (B+C +D)

=(A+B +D) (A+B +C) (C"+ D)
%,_/
$—— climinate by consensus
= (A + B +D')C + D) (5-3)
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5.2 Two- and Three-Variable Karnaugh Maps

Just like a truth table, the Karnaugh map of a function specifies the value of the func-
tion for every combination of values of the independent variables. A two-variable
Karnaugh map is shown. The values of one variable are listed across the top of the
map, and the values of the other variable are listed on the left side. Each square of
the map corresponds to a pair of values for A and B as indicated.

Figure 5-1 shows the truth table for a function F and the corresponding
Karnaugh map. Note that the value of F for A = B = 0 is plotted in the upper left
square, and the other map entries are plotted in a similar way in Figure 5-1(b).
Each 1 on the map corresponds to a minterm of F. We can read the minterms from
the map just like we can read them from the truth table. A 1 in square 00 of Figure
5-1(c) indicates that A’'B’ is a minterm of F. Similarly, a 1 in square 01 indicates
that A’ B is a minterm. Minterms in adjacent squares of the map can be combined
since they differ in only one variable. Thus, A’'B’ and A’ B combine to form A’, and
this is indicated by looping the corresponding 1’s on the map in Figure 5-1(d).

FIGURE 5-1 A A A
B 0 1 B 0 1 B 0 1
ol 1] o ol 1] o 0 m 0
A'B" ] AB +A'B=A"—|_
i1 0 ! 0 1 u 0
F=A'B"+A’B F=A

(b) (© (@

Figure 5-2 shows a three-variable truth table and the corresponding Karnaugh
map (see Figure 5-27 for an alternative way of labeling maps). The value of one
variable (A) is listed across the top of the map, and the values of the other two
variables (B, C) are listed along the side of the map. The rows are labeled in
the sequence 00, 01, 11, 10 so that values in adjacent rows differ in only one vari-
able. For each combination of values of the variables, the value of F is read
from the truth table and plotted in the appropriate map square. For example,
for the input combination ABC = 001, the value F = 0 is plotted in the square
for which A = 0 and BC = 01. For the combination ABC = 110, F = 1 is plotted
in the A = 1, BC = 10 square.
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FIGURE 5-2 ABC
Truth Table and 000
Karnaugh Map for 001
Three-Variable 19
Function 011

-

_
- O =0
O -0 == =00

(a)

Figure 5-3 shows the location of the minterms on a three-variable map.
Minterms in adjacent squares of the map differ in only one variable and therefore
can be combined using the theorem XY’ + XY = X. For example, minterm 011
(a’bc) is adjacent to the three minterms with which it can be combined—001
(a'b’c), 010 (a’'bc’), and 111 (abc). In addition to squares which are physically
adjacent, the top and bottom rows of the map are defined to be adjacent because
the corresponding minterms in these rows differ in only one variable. Thus 000
and 010 are adjacent, and so are 100 and 110.

FIGURE 5-3 a a
Location of be 0 1 be 0 1
Minterms on 4
. 00 000 | 100 00 0 4
a Three-Variable
Karnaugh Map
01001 | 101 | (00is 01| 1 5
i adjacent
11| o11<p111 | to 110 1| 3 7
*
Y
10| 010 | 110 10 2 6
Ly
(a) Binary notation (b) Decimal notation

Given the minterm expansion of a function, it can be plotted on a map by
placing 1’s in the squares which correspond to minterms of the function and 0’s
in the remaining squares (the 0’s may be omitted if desired). Figure 5-4 shows the
plot of F(a, b, ¢) =m; + ms+ ms. If Fis given as a maxterm expansion, the map is
plotted by placing 0’s in the squares which correspond to the maxterms and then
by filling in the remaining squares with 1’s. Thus, F(a, b,c) = MqM, M, MM,
gives the same map as Figure 5-4.
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FIGURE 5-4
Karnaugh Map of
F(a, b, ¢) =
>m(1,3,5) =

1T M(0, 2, 4,6, 7)

Figure 5-5 illustrates how product terms can be plotted on Karnaugh maps. To
plot the term b, 1’s are entered in the four squares of the map where b = 1. The
term bc' is 1 when b = 1 and ¢ = 0, so 1’s are entered in the two squares in the
bc = 10 row. The term ac’ is 1 when a = 1 and ¢ = 0, so 1’s are entered in the a =
1 column in the rows where ¢ = 0.

FIGURE 5-5
Karnaugh Maps for
Product Terms

If a function is given in algebraic form, it is unnecessary to expand it to minterm
form before plotting it on a map. If the algebraic expression is converted to sum-of-
products form, then each product term can be plotted directly as a group of 1’s on
the map. For example, given that

f(a,b,c) = abc' + b'c + a’

we would plot the map as follows:

1. The term abc”is 1 when a = 1 and bc = 10, so 7\
we place a 1 in the square which corresponds
to the a = 1 column and the bc = 10 row of the

) map. } 01 4(1 1)

. The term b’c is 1 when bc = 01, so we place 1's
in both squares of the bc = 01 row of the map.

3. The term @’ is | when a =0, so we place 1's in |1

all the squares of the @ = 0 column of the map.

(Note: Since there already is a 1 in the abc = 1

001 square, we do not have to place a second \_/ N

1 there because x + x = x.) \

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

132 units

Figure 5-6 illustrates how a simplified expression for a function can be derived
using a Karnaugh map. The function to be simplified is first plotted on a Karnaugh
map in Figure 5-6(a). Terms in adjacent squares on the map differ in only one
variable and can be combined using the theorem XY’ + XY = X.Thus a'b’c and
a’'bc combine to form a’c, and a'b’c and ab’c combine to form b’c, as shown in
Figure 5-6(b). A loop around a group of minterms indicates that these terms have
been combined. The looped terms can be read directly off the map. Thus, for
Figure 5-6(b), term T7) is in the a = 0 (a’) column, and it spans the rows where
¢ = 1,s0 T}, = a’c. Note that b has been eliminated because the two minterms in 7;
differ in the variable b. Similarly, the term 7) is in the bc = 01 rowso T, = b'c,and
a has been eliminated because 7, spans the a = 0 and a = 1 columns. Thus, the
minimum sum-of-products form for Fis a’'c + b'c.

FIGURE 5-6
Simplification of a
Three-Variable

Function
The map for the complement of F (Figure 5-7) is formed by replacing 0’s with
1’s and 1’s with 0’s on the map of F.To simplify F’, note that the terms in the top
row combine to form b’c’, and the terms in the bottom row combine to form bc’'.
Because b'c’ and bc¢' differ in only one variable, the top and bottom rows can then
be combined to form a group of four 1’s, thus eliminating two variables and leav-
ing 7} = ¢".'The remaining 1 combines, as shown, to form 7, = ab, so the minimum
sum-of-products form for F' is ¢’ + ab.
FIGURE 5-7 a
Complement of beN_, 9 L
Map in Figure
5.6(a) 00 | 1 1

01] o0 0

_Ty=ab
1] 0 ﬂ‘
N
10 (1 1

Ty=b'¢’+bc’=c¢"
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The Karnaugh map can also illustrate the basic theorems of Boolean algebra.
Figure 5-8 illustrates the consensus theorem, XY + X'Z + YZ = XY + X'Z.Note
that the consensus term (YZ) is redundant because its 1’s are covered by the other
two terms.

FIGURE 5-8
Karnaugh Maps
that lllustrate the
Consensus Theorem

If a function has two or more minimum sum-of-products forms, all of these
forms can be determined from a map. Figure 5-9 shows the two minimum solutions
for F = 2 m(0,1,2,5,6,7).

FIGURE 5-9 a a
Function with Two be 0 1 beN_, V0,

Minimum Forms 0 m 00 LIJ
01 LlJ m 01 E
1 M 11
DICHED 10 m

F=a'b’" +bc’+ac F=a'c’+b'c+ab

ab)®

5.3 Four-Variable Karnaugh Maps

Figure 5-10 shows the location of minterms on a four-variable map. Each minterm
is located adjacent to the four terms with which it can combine. For example, m;
(0101) could combine with m, (0001), m, (0100), m; (0111), or m,5 (1101) because it
differs in only one variable from each of the other minterms. The definition of adja-
cent squares must be extended so that not only are top and bottom rows adjacent
as in the three-variable map, but the first and last columns are also adjacent. This
requires numbering the columns in the sequence 00, 01, 11, 10 so that minterms 0
and 8,1 and 9, etc., are in adjacent squares.
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FIGURE 5-10
Location

of Minterms on
Four-Variable
Karnaugh Map

We will now plot the following four-variable expression on a Karnaugh map
(Figure 5-11):

f(a,b,c,d) =acd +a'b +d

The first term is 1 when a = ¢ = d = 1, so we place 1’s in the two squares which
are in the a = 1 column and c¢d = 11 row. The term a’'b is 1 when ab = 01, so we
place four 1’s in the ab = 01 column. Finally, d’ is 1 when d = 0, so we place
eight 1’s in the two rows for which d = 0. (Duplicate 1’s are not plotted
because 1 + 1 =1.)

FIGURE 5-11
Plot of
acd +a'b+ d

Next, we will simplify the functions f; and f, given in Figure 5-12. Because the
functions are specified in minterm form, we can determine the locations of the 1’s on
the map by referring to Figure 5-10. After plotting the maps, we can then combine
adjacent groups of 1’s. Minterms can be combined in groups of two, four, or eight to
eliminate one, two, or three variables, respectively. In Figure 5-12(a), the pair of 1’s in
the ab = 00 column and also in the d = 1 rows represents a’'b’d. The group of four
1’s in the b = 1 columns and ¢ = 0 rows represents bc'.
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FIGURE 5-12
Simplification of
Four-Variable
Functions

In Figure 5-12(b), note that the four corner 1’s span the » = 0 columns and d = 0
rows and, therefore, can be combined to form the term b'd’. The group of eight 1’s
covers both rows where ¢ = 1 and, therefore, represents the term c. The pair of 1’s
which is looped on the map represents the term a’'bd because it is in the ab = 01
column and spans the d = 1 rows.

The Karnaugh map method is easily extended to functions with don’t-care
terms. The required minterms are indicated by 1’s on the map, and the don’t-care
minterms are indicated by X’s. When choosing terms to form the minimum
sum of products, all the 1’s must be covered, but the X’s are only used if they will
simplify the resulting expression. In Figure 5-13, the only don’t-care term used in
forming the simplified expression is 13.

FIGURE 5-13
Simplification of
an Incompletely

Specified Function

The use of Karnaugh maps to find a minimum sum-of-products form for
a function has been illustrated in Figures 5-1, 5-6, and 5-12. A minimum prod-
uct of sums can also be obtained from the map. Because the 0’s of fare 1’s of f',
the minimum sum of products for f' can be determined by looping the 0’s
on a map of f. The complement of the minimum sum of products for f' is then
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the minimum product of sums for f. The following example illustrates this
procedure for

[

y'zh +xly
First, the 1’s of f are plotted in Figure 5-14. Then, from the 0’s,

f=xz +wyz+w

fr=yz+wxz' + whxy
and the minimum product of sums for fis
f=0+z2H)wW +x" + 2)(w+x" +y)

FIGURE 5-14 wx

5.4 Determination of Minimum Expressions
Using Essential Prime Implicants

Any single 1 or any group of 1’s which can be combined together on a map of the
function F represents a product term which is called an implicant of F (see Section
6.1 for a formal definition of implicant and prime implicant). Several implicants of
F are indicated in Figure 5-15. A product term implicant is called a prime implicant
if it cannot be combined with another term to eliminate a variable. In Figure 5-15,

FIGURE 5-15
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a'b'c, a'cd', and ac’ are prime implicants because they cannot be combined with
other terms to eliminate a variable. On the other hand,a’b’c’d’ is not a prime impli-
cant because it can be combined with a’b’cd’ or ab’c'd’. Neither abc’, nor ab’c’ is a
prime implicant because these terms can be combined together to form ac’.

All of the prime implicants of a function can be obtained from a Karnaugh map.
A single 1 on a map represents a prime implicant if it is not adjacent to any other 1’s.
Two adjacent 1’s on a map form a prime implicant if they are not contained in a group
of four 1’s; four adjacent 1’s form a prime implicant if they are not contained in a
group of eight 1s, etc.

The minimum sum-of-products expression for a function consists of some (but not
necessarily all) of the prime implicants of a function. In other words, a sum-of-prod-
ucts expression containing a term which is not a prime implicant cannot be minimum.
This is true because if a nonprime term were present, the expression could be simpli-
fied by combining the nonprime term with additional minterms. In order to find the
minimum sum of products from a map, we must find a minimum number of prime
implicants which cover all of the 1’s on the map. The function plotted in Figure 5-16
has six prime implicants. Three of these prime implicants cover all of the 1’s on the
map, and the minimum solution is the sum of these three prime implicants. The shad-
ed loops represent prime implicants which are not part of the minimum solution.

FIGURE 5-16 ab
Determination of cd 00 ol 1 10
All Prime Implicants \
P 00 | 1 |{1)
a’c’d — [
o1 (’i _1 N 1 : Minimum solution: F = a’b’d + bc” + ac
~ =/ All prime implicants: a’b’d, bc’, ac, a’c’d, ab, b’cd
N — — 1
11_ L) | 1 : \\1
|
| \
10 \ 1) 1 bed

When writing down a list of all of the prime implicants from the map, note that
there are often prime implicants which are not included in the minimum sum of
products. Even though all of the 1’s in a term have already been covered by prime
implicants, that term may still be a prime implicant provided that it is not included in
a larger group of 1’s. For example, in Figure 5-16, a’c’d is a prime implicant because
it cannot be combined with other 1’s to eliminate another variable. However, abd is
not a prime implicant because it can be combined with two other 1’s to form ab. The
term b’cd is also a prime implicant even though both of its 1’s are already covered
by other prime implicants. In the process of finding prime implicants, don’t-cares are
treated just like 1’s. However, a prime implicant composed entirely of don’t-cares can
never be part of the minimum solution.

Because all of the prime implicants of a function are generally not needed in
forming the minimum sum of products, a systematic procedure for selecting prime
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implicants is needed. If prime implicants are selected from the map in the wrong
order, a nonminimum solution may result. For example, in Figure 5-17,if CD is cho-
sen first, then BD, B'C, and AC are needed to cover the remaining 1’s, and the solu-
tion contains four terms. However, if the prime implicants indicated in Figure 5-17(b)
are chosen first, all 1’s are covered and CD is not needed.

FIGURE 5-17 AB AB
ecpN\C 00 01 1110 cpN. 00 01 11 10

00 00

ms

Va2 “~
01 td 1) 01 ll 1
|
| Ll=—1 B ~
7T 17 1) e
I|1__|_1//||)| 1 1|L1 1/(11
o T
|
o] 1) \;_L\l/ 0] 1 1|1

1113 myy

f=CD+BD+B'C+AC f=BD+B'C+AC
(@ (b)

[

Note that some of the minterms on the map of Figure 5-17(a) can be covered
by only a single prime implicant, but other minterms can be covered by two differ-
ent prime implicants. For example, m, is covered only by B'C, but m; is covered by
both B'C and CD. If a minterm is covered by only one prime implicant, that prime
implicant is said to be essential, and it must be included in the minimum sum of
products. Thus, B'C is an essential prime implicant because m, is not covered by
any other prime implicant. However, CD is not essential because each of the 1’s in
CD can be covered by another prime implicant. The only prime implicant which
covers ms is BD, so BD is essential. Similarly, AC is essential because no other
prime implicant covers my,. In this example, if we choose all of the essential prime
implicants, all of the 1’s on the map are covered and the nonessential prime impli-
cant CD is not needed.

In general, in order to find a minimum sum of products from a map, we should
first loop all of the essential prime implicants. One way of finding essential prime
implicants on a map is simply to look at each 1 on the map that has not already
been covered, and check to see how many prime implicants cover that 1. If there is
only one prime implicant which covers the 1, that prime implicant is essential. If
there are two or more prime implicants which cover the 1, we cannot say whether
these prime implicants are essential or not without checking the other minterms.
For simple problems, we can locate the essential prime implicants in this way by
inspection of each 1 on the map. For example, in Figure 5-16, m, is covered only by
the prime implicant bc’, and m,, is covered only by the prime implicant ac. All
other 1’s on the map are covered by two prime implicants; therefore, the only
essential prime implicants are bc’ and ac.
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For more complicated maps, and especially for maps with five or more vari-
ables, we need a more systematic approach for finding the essential prime
implicants. When checking a minterm to see if it is covered by only one prime
implicant, we must look at all squares adjacent to that minterm. If the given
minterm and all of the 1’s adjacent to it are covered by a single term, then that
term is an essential prime implicant.! If all of the 1’s adjacent to a given minterm
are not covered by a single term, then there are two or more prime implicants
which cover that minterm, and we cannot say whether these prime implicants
are essential or not without checking the other minterms. Figure 5-18 illustrates
this principle.

FIGURE 5-18 AB
cD 00 01 11 10
1 1
00 W, . .
0 4 12 3 Note: 1's shaded in blue are covered
AC’ by only one prime implicant. All
{/ N other 1's are covered by at least two
01 1 1 | prime implicants.
1| | s 13 9
[ P
1 ((\1 ) | (1) 1 J<{—ACD
3 7 15 11
10 m
2 6 14 10

The adjacent 1’s for minterm m, (l,) are 1, 1,, and 1,. Because no single term
covers these four 1’s, no essential prime implicant is yet apparent. The adjacent 1’s
for 1, are 1, and 15, so the term which covers these three 1’s (A’C") is an essential
prime implicant. Because the only 1 adjacent to 1, is 1, A’B’'D’ is also essential.
Because the 1’s adjacent to 1, (15 and 1;5) are not covered by a single term, neither
A'BD nor BCD is essential at this point. However, because the only 1 adjacent to
1,18 145, ACD is essential. To complete the minimum solution, one of the nonessen-
tial prime implicants is needed. Either A’BD or BCD may be selected. The final
solution is

A'BD
A'C' + A'B'D' + ACD +4 or
BCD

This statement is proved in Appendix D.
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FIGURE 5-19
Flowchart for
Determining a
Minimum Sum of
Products Using a
Karnaugh Map
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Choose a 1 which has
not been covered.

Find all adjacent
1's and X's.

Are the chosen
1 and its adjacent 1's
and X's covered by a
single term?

That term is an essential
prime implicant. Loop it.

All
uncovered 1's
checked?

NO

Note: All essential prime
/ implicants have been
YES L determined at this point.

Find a minimum set of prime
implicants which cover the
remaining 1's on the map.

STOP

If a don’t-care minterm is present on the map, we do not have to check it to see if
it is covered by one or more prime implicants. However, when checking a 1 for adja-
cent 1’s, we treat the adjacent don’t-cares as if they were 1’s because don’t-cares may
be combined with 1’s in the process of forming prime implicants. The following proce-
dure can then be used to obtain a minimum sum of products from a Karnaugh map:

1. Choose a minterm (a 1) which has not yet been covered.

2. Find all 1’s and X’s adjacent to that minterm. (Check the n adjacent squares on
an n-variable map.)

3. If asingle term covers the minterm and all of the adjacent 1’s and X’s, then that
term is an essential prime implicant, so select that term. (Note that don’t-care
terms are treated like 1’s in steps 2 and 3 but not in step 1.)
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4. Repeatsteps 1,2, and 3 until all essential prime implicants have been chosen.

5. Find a minimum set of prime implicants which cover the remaining 1’s on the
map. (If there is more than one such set, choose a set with a minimum number
of literals.)

Figure 5-19 gives a flowchart for this procedure. The following example
(Figure 5-20) illustrates the procedure. Starting with 1,, we see that the adjacent
1’s and X’s (X, 15, and 14) are not covered by a single term, so no essential prime
implicant is apparent. However, 1, and its adjacent 1’s and X’s (1, and X;) are
covered by A'B, so A'B is an essential prime implicant. Next, looking at 1,5, we
see that its adjacent 1’s and X’s (15, 1o, and X;5) are not covered by a single term,
so no essential prime implicant is apparent. Similarly, an examination of the
terms adjacent to 13 and 14 reveals no essential prime implicants. However, 1,
has only 15 adjacent to it,so AB'D’ is an essential prime implicant because it cov-
ers both I, and 15. Having first selected the essential prime implicants, we now
choose AC'D because it covers both of the remaining 1’s on the map.

Judicious selection of the order in which the minterms are selected (step 1)
reduces the amount of work required in applying this procedure. As will be seen in
the next section, this procedure is especially helpful in obtaining minimum solu-
tions for five- and six-variable problems.

FIGURE 5-20 AB
cD 00 01 1,10,
A 7
00 X, 14 1g
01 1 1 1
5 13 3 Shaded 1's are covered by

only one prime implicant.

10 1 1
&) .

5.5 Five-Variable Karnaugh Maps

A five-variable map can be constructed in three dimensions by placing one four-vari-
able map on top of a second one. Terms in the bottom layer are numbered 0 through
15 and corresponding terms in the top layer are numbered 16 through 31, so that
terms in the bottom layer contain A" and those in the top layer contain A. To repre-
sent the map in two dimensions, we will divide each square in a four-variable map by
a diagonal line and place terms in the bottom layer below the line and terms in the
top layer above the line (Figure 5-21). Terms in the top or bottom layer combine just
like terms on a four-variable map. In addition, two terms in the same square which
are separated by a diagonal line differ in only one variable and can be combined.
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FIGURE 5-21
A Five-Variable
Karnaugh Map
BC
DE

00

These terms do not combine because they are
in different layers and different columns
(they differ in two variables).

00

16

01

T 20 25 ; These eight terms combine to give BD’ (B from
last two columns and D’ from top two rows; A is
1 1 eliminated because four terms are in the top layer
5 3 9 and four in the bottom).

AN

1 1 These four terms (two from top layer and two
from bottom) combine to yield CDE (C from the
7 15 1 middle two columns and DE from the row).

10

S}

6 14 10

These two terms in the top layer combine to give AB’DE’.

However, some terms which appear to be physically adjacent are not. For example,
terms 0 and 20 are not adjacent because they appear in a different column and a
different layer. Each term can be adjacent to exactly five other terms, four in the
same layer and one in the other layer (Figure 5-22). An alternate representation
for five-variable maps is to draw the two layers side-by-side, as in Figure 5-28, but
most individuals find adjacencies more difficult to see when this form is used.

When checking for adjacencies, each term should be checked against the five
possible adjacent squares. (In general, the number of adjacent squares is equal to the
number of variables.) Two examples of five-variable minimization using maps follow.
Figure 5-23 is a map of

F(A,B,C,D,E) =2m(0,1,4,5,13,15, 20, 21, 22, 23, 24, 26, 28, 30, 31)

FIGURE 5-22 BC
DE 00 01 1 10
00 1
G
01
s 1 | W) 1)
%

10
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FIGURE 5-23 BC
DE 00 01 11 10

Y
' 1 1
00 1 iz
l Shaded 1's are used to

0 ' -
@ ™ select essential prime
Il

implicants.

1]
01 U
A 1 | 1) 1
% 1
’ | )
B L e )
| U,
—
I I N
10 \J 1 1

Prime implicant P, is chosen first because all of the 1’s adjacent to minterm O are
covered by P,. Prime implicant P, is chosen next because all of the 1’s adjacent to
minterm 24 are covered by P,. All of the remaining 1’s on the map can be cov-
ered by at least two different prime implicants, so we proceed by trial and error.
After a few tries, it becomes apparent that the remaining 1’s can be covered by
three prime implicants. If we choose prime implicants P; and P, next, the remain-

ing two 1’s can be covered by two different groups of four. The resulting mini-
mum solution is

AB'C
F=A'B'D" + ABE' + ACD + A'BCE + or
P, P, P; P, B'CD’

Figure 5-24 is a map of
F(A,B,C,D,E) =3%m(0,1,3,8,9,14,15,16,17, 19, 25,27, 31)

All 1’s adjacent to m;4 are covered by P, so choose P, first. All 1’s adjacent to mi;
are covered by P,, so P, is chosen next. All 1’s adjacent to mg are covered by P, so
P; is chosen. Because m, is only adjacent to m,s, P, is also essential. There are no
more essential prime implicants, and the remaining 1’s can be covered by two terms,
Ps and (1-9-17-25) or (17-19-25-27). The final solution is

C'D'E
F=B'C'D'+BCE+A'C'D' + A'BCD + ABDE + or
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FIGURE 5-24
o @
DE 00 01 11 10

16 4ES 28 24
00 1 N (1
0 4 12 8
17 21 29 25
1 1
01
A ! - . L}
5 3 9
l/ 19 23 31 27
0

18 22 30 26

¥
o
=

10

5.6 Other Uses of Karnaugh Maps

Many operations that can be performed using a truth table or algebraically can be
done using a Karnaugh map. A map conveys the same information as a truth table—
it is just arranged in a different format. If we plot an expression for F on a map, we
can read off the minterm and maxterm expansions for F and for F'. From the map
of Figure 5-14, the minterm expansion of fis

f =32m(0,2,3,4,8,10,11, 15)
and because each 0 corresponds to a maxterm, the maxterm expansion of f'is
f=1M®1,5,6,7,9,12,13, 14)

We can prove that two functions are equal by plotting them on maps and show-
ing that they have the same Karnaugh map. We can perform the AND operation
(or the OR operation) on two functions by ANDing (or ORing) the 1’s and 0’s
which appear in corresponding positions on their maps. This procedure is valid
because it is equivalent to doing the same operations on the truth tables for the
functions.

A Karnaugh map can facilitate factoring an expression. Inspection of the map
reveals terms which have one or more variables in common. For the map of
Figure 5-25, the two terms in the first column have A’B’ in common; the two terms
in the lower right corner have AC in common.
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FIGURE 5-25 AB
cpN. 00 01 1110

o[

o | (1)
F=A'B'(C'+D)+ACB+D’)

10 @J

When simplifying a function algebraically, the Karnaugh map can be used as a
guide in determining what steps to take. For example, consider the function

F=ABCD + B'CDE + A'B" + BCE'

From the map (Figure 5-26), we see that in order to get the minimum solution, we
must add the term ACDE. We can do this using the consensus theorem:

F = ABCD + B'CDE + A'B' + BCE' + ACDE
T T %

As can be seen from the map, this expression now contains two redundant terms,
ABCD and B'CDE. These can be eliminated using the consensus theorem, which
gives the minimum solution:

F=A'B"+ BCE' + ACDE

FIGURE 5-26 BC
DE 00 01 11 10
16 20 28 24
7] 1
00 1 1 1
0 4 12 3
17 21 29 25
01
1 1
A 1 5 13 9
1 5 » 9
/() 19 23 31 27
A
4 1)
11 N2 I I
1 ¥
, 1 . Add this term.
3 yud i 15 11
18 2 3( 26
b
10 1 1 A1
2 6 N 14 10

Then these two terms can be eliminated.
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5.7

FIGURE 5-27
Veitch Diagrams

FIGURE 5-28
Other Forms
of Five-Variable
Karnaugh Maps
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Other Forms of Karnaugh Maps

Instead of labeling the sides of a Karnaugh map with 0’s and 1’s, some people
prefer to use the labeling shown in Figure 5-27. For the half of the map labeled A,
A = 1; and for the other half, A = 0. The other variables have a similar interpreta-
tion. A map labeled this way is sometimes referred to as a Veitch diagram. It is par-
ticularly useful for plotting functions given in algebraic form rather than in
minterm or maxterm form. However, when utilizing Karnaugh maps to solve
sequential circuit problems (Units 12 through 16), the use of 0’s and 1’s to label the
maps is more convenient.

A A
— —
C D
B C
- —
B

Two alternative forms for five-variable maps are used. One form simply consists
of two four-variable maps side-by-side as in Figure 5-28(a). A modification of this
uses a mirror image map as in Figure 5-28(b). In this map, first and eighth columns
are “adjacent” as are second and seventh columns, third and sixth columns, and
fourth and fifth columns. The same function is plotted on both these maps.

BC 7 BC NN B
pEN Q0111 10 pp\"00 01 11\10

t J —1 !
ool(aT 1 1 [[1) of(xlf 11D Al m|alr1l
1 T
01 g{ 1 vy n IR 1 1 tl .
P R
11 IO St a1 Q al o
e D
10 m 10 m
— L — —
A=0 A=1 e e

(a) (b)
F = DE +BCD'+BCE+ A'BC'E' + ACDE
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Programmed Exercise 5.1

Cover the answers to this exercise with a sheet of paper and slide it down as you
check your answers. Write your answers in the space provided before looking at the
correct answer.

Problem: Determine the minimum sum of products and minimum product of
sums for

f=b'c'd + bcd + acd' + a’'b'c + a’bc'd
First, plot the map for f.

00 01 11 10
00
01
11
10
Answer:

ab

cd\_ 00 01 11 10
0] 1 1
01 1
1] 1 1 1
0] 1 1 1

(a) The minterms adjacent to m, on the preceding map are and

(b) Find an essential prime implicant containing m, and loop it.

(¢) The minterms adjacent to m; are and
(d) Is there an essential prime implicant which contains m2;?
(e) Find the remaining essential prime implicant(s) and loop it (them).
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Answers:
(a) m, and myg (b) ab
(c) m, and my (e) «cd 00 o0l 110
(d) No 0o 1 1
N0
S IOT
10 1 1 1
Loop the remaining 1’s using a minimum number of loops.
The two possible minimum sum-of-products forms for f are
f= and
f=
Answer: ab
ed\_ 00 Ol 11 10

01 m ’.
a’ced
= f:b'd’+a’bd+abc+{ or }
11 (Ll_j 1)) m a’b’c
T

o) W]

Next, we will find the minimum product of sums for f. Start by plotting the map for f".

Loop all essential prime implicants of f' and indicate which minterm makes each
one essential.

00 01 11 10

00

01

10

I
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Answer:

ab
cd\_ 00 01 11 10

o T
o 1) 1 ()]

Essential because of '”1/
11 1 Essential because of m

10 (i\ Essential because of nig

Loop the remaining 1’s and write the minimum sum of products for f.

fr=

The minimum product of sums for fis therefore

f=

Final Answer: ' = b'c'd + a’bd’ + ab'd + abc’
f=0b+c+d)a@a+b +d)y@+b+d)@ +b +c)

Programmed Exercise 5.2

Problem: Determine a minimum sum-of-products expression for

fla,b,c,dye)=(a"+c+d)(@ +b+e)(a+c' +e)(c+d+e')
(b+c+d'+e)(a +b" +c+e)

The first step in the solution is to plot a map for f. Because f'is given in product-of-
sums form, it is easier to first plot the map for f’ and then complement the map.
Write f’ as a sum of products:

=
Now plot the map for f'. (Note that there are three terms in the upper layer, one
term in the lower layer, and two terms which span the two layers.)

Next, convert your map for f' to a map for f.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

150 units
bc bc
de 00 01 11 10 de 00 01 11 10
00 00
01 01
a a
1 1
4 %
11 11
10 10
f’ f
Answer:
bc bc
de 00 01 11 10 de 00 01 11 10
- 16 20 28 24
1) 1 (1 1
00| \A J 00 1 1 1 1
0 4 12 8
n T 17 21 29 25
) 1) 1 1
01 /1 1 01
1 1
a N >\ 1 4 1 5 13 9
1 1 : 9
/0 /() 19 23 31 27
1 1 1 1
11 1 1 11
N 1 1
3 7 15 11
18 22 30 26
10 1 10 ! !
1 1 1
2 6 14 10
f f

The next step is to determine the essential prime implicants of f.
(a) Why is a'd'e’ an essential prime implicant?

(b) Which minterms are adjacent to m;? To m,4?
(c) Is there an essential prime implicant which covers mi; and m19?
(d) Is there an essential prime implicant which covers m1,,?

(e) Loop the essential prime implicants which you have found. Then, find two more
essential prime implicants and loop them.
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(a) It covers m and both adjacent minterms.
(b) myy and myy; ms and mys

(c) No
(d) Yes
(e) bc
de
00
01
a
%

00

01

1 1 1)
1
1 1
1 1
1
1 1

(a) Why is there no essential prime implicant which covers m,;?
(b) Why is there no essential prime implicant which covers n1,3?

Because there are no more essential prime implicants, loop a minimum number of

terms which cover the remaining 1’s.

(a) All adjacent 1’s of my; (m3, m,,) cannot be covered by one grouping.
(b) All adjacent 1’s of m,g (1145, M3, My) cannot be covered by one grouping.

bc
de 00

01

00 1

01

AN

10

Note: There are five other
possible ways to loop the
four remaining 1's.
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Write down two different minimum sum-of-products expressions for f.
f:
f:
Answer:
abc b'c'de + a'c'de
f=a'de + ace + a'ce’ + bde' +1{ or  + {b'c'de + a'bc'd
bce’ ab'de + a'c'de
Problems

5.3 Find the minimum sum of products for each function using a Karnaugh map.
(@) fila, bc) =mo+my+ms+ms (b) f,(def)=2m(0,124)
(©) filnst)=r' +7r's" +7's (d) fu(x, 3, 2) = My » Ms

5.4 (a) Plot the following function on a Karnaugh map. (Do not expand to minterm
form before plotting.)

F(A.B,C,D) = BD' + B'CD + ABC + ABC'D + B'D’

(b) Find the minimum sum of products.
(c) Find the minimum product of sums.

5.5 A switching circuit has two control inputs (C; and C,), two data inputs (X; and X5),
and one output (Z). The circuit performs one of the logic operations AND, OR,
EQU (equivalence), or XOR (exclusive OR) on the two data inputs. The function
performed depends on the control inputs:

Function Performed

¢ G by Circuit
0 O OR
0 1 XOR
1 0 AND
1 1 EQU

(a) Derive a truth table for Z.
(b) Use a Karnaugh map to find a minimum AND-OR gate circuit to realize Z.

5.6 Find the minimum sum-of-products expression for each function. Underline the essen-
tial prime implicants in your answer and tell which minterm makes each one essential.
(a) f(a,b,c,d)=2m(0,1,3,5,6,7,11,12, 14)
(b) f(a,b,c,d) =11 M(1,9,11,12,14)
(c) f(a, b,c,d)=11M(57,13,14,15) « I1 D(1,2,3,9)

Downloaded From : www.EasyEngineering.net



5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

Downloaded From : www.EasyEngineering.net

Karnaugh Maps 153

Find the minimum sum-of-products expression for each function.
(a) f(a, b, c, d)=2m(0,2,3,4,7,8,14)

(®) f(a, b, c,d) =3 m(1,2,4,15) + % d(0,3,14)

(c) fa, byc,d)y=11M(®1,2,3,4,9,15)

(d) f(a, b,c,d) =11 M(0,2,4,6,8) « Il D(1,12,9, 15)

Find the minimum sum of products and the minimum product of sums for each
function:

(a) f(a, b, c,d) =11 M(0,1,6,8,11,12) « [1 D(3,7, 14, 15)

(®) f(a, b c,d) =3m(1,3,4,11) + % d(2,7,8,12,14,15)

Find the minimum sum of products and the minimum product of sums for each
function:
(a) F(A,B,C, D, E) =3%m(0,1,2,6,7,9,10, 15,16, 18, 20, 21, 27, 30)
+3d(3,4,11,12,19)
(b) F(A, B, C, D, E) =11 M(0,3,6,9,11, 19, 20, 24, 25, 26, 27, 28, 29, 30)
« 11 D(1,2,12,13)

F(a, b de)=3%m(0,3,4,56,7,8,12,13,14,16,21,23,24,29,31)

(a) Find the essential prime implicants using a Karnaugh map, and indicate why
each one of the chosen prime implicants is essential (there are four essential
prime implicants).

(b) Find all of the prime implicants by using the Karnaugh map. (There are nine in all.)

Find a minimum product-of-sums solution for f. Underline the essential prime
implicants.

flabcde)=3m24,5,6,738,10,12,14,16,19,27,28,29,31) + S d(1, 30)

Given F= AB'D' + A'B + A'C+ CD.

(a) Use a Karnaugh map to find the maxterm expression for F (express your
answer in both decimal and algebric notation).

(b) Use a Karnaugh map to find the minimum sum-of-products form for F'.

(c) Find the minimum product of sums for F.

Find the minimum sum of products for the given expression. Then, make minterm
5 a don’t-care term and verify that the minimum sum of products is unchanged.
Now, start again with the original expression and find each minterm which
could individually be made a don’t-care without changing the minimum sum of
products.

F(A,B,C,D) = A'C'+ B'C+ ACD'+ BC'D

Find the minimum sum-of-products expressions for each of these functions.
(@) filA,BCO)=m; +my+ ms+m;  (b) fo(d, e f) =2m(1,5,6,7)

(©) fs(ns,t) =rs" +r's" + st (d) fula, b, c) = my+ my, + ms + my
(e) f5(l’l, P Q) - 2 m(l’ 3’ 4? 5) (f) f6(x1 Vs Z) - M1M7
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5.15 Find the minimum product-of-sums expression for each of the functions in
Problem 5.14.

5.16 Find the minimum sum of products for each of these functions.
(@) filA,B,C)=my +ms+my + mg (b) fr(d, e, f) =2 m(1,4,5,7)
(c) fs(nst)y=r't +rs" +rs (d) fi(a, b, c) = my + my + mg + my
(e) fZ(n) )2 Q) - 2 m(za 37 5’ 7) (f) f4 (x, » Z) - M3M6

5.17 (a) Plot the following function on a Karnaugh map. (Do not expand to minterm
form before plotting.)

F(A,BCD)=A'B'+ CD' + ABC + A'B'CD' + ABCD'

(b) Find the minimum sum of products.
(¢) Find the minimum product of sums.

5.18 Work Problem 5.17 for the following:
f(A,BCD)=A'B'+ A'B'C' + A'BD' + AC'D + A’'BD+ AB'CD’
5.19 A switching circuit has two control inputs (C; and C,), two data inputs (X, and X,),

and one output (Z). The circuit performs logic operations on the two data inputs, as
shown in this table:

Function Performed
G G by Circuit
0 0 X4 X5
0 1 X1 @ X,
1 0 X) + X,
1 1 X1 =X,

(a) Derive a truth table for Z.
(b) Use a Karnaugh map to find a minimum OR-AND gate circuit to realize Z.

5.20 Use Karnaugh maps to find all possible minimum sum-of-products expressions for
each function.
(a) F(a, b,c) =11 M(3,4)
(b) g(d, e, f) =2 m(1,4,6) + % d(0,2,7)
() Fpgr) =@ +4q" +1)p +q+7)
(d) F(s, t,u) =% m(1,2,3) + 2 d(0,5,7)
(e) fla,b,c) =11 M(2,3,4)
(f)y G(D, E, F) = 2 m(1,6) + % d(0,3,5)
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5.21 Simplify the following expression first by using a map and then by using Boolean
algebra. Use the map as a guide to determine which theorems to apply to which
terms for the algebraic simplification.

F=a'b'c" +a'c'd+ bed + abc + ab’

5.22 Find all prime implicants and all minimum sum-of-products expressions for each of
the following functions.
(a) f(A,B,C,D) =3 m(4,11,12,13,14) + % d(5,6,7,8,9,1
(b) (A,B,C,D) = % m(3,11,12,13,14) + X d(5,6,7,8,9,1
(¢) (A,B,C,D) =% m(1,2,4,13,14) + X d(5,6,7,8,9,10)
(d) f(A,B,C,D) = % m(4,15) + % d(5,6,7,8,9,10)
(e) f(A,B,C,D) = % m(3,4,11,15) + % d(5,6,7,8,9,10)
(f) IA,B,C,D) =2 m(4) +2d(5,6,7,8,9,10,11,12,13,14)
(g) f(A,B,C,D) =3 m(4,15) + % d(0,1,2,5,6,7,8,9,10)

0)
0)

5.23 For each function in Problem 5.22, find all minimum product-of-sums expressions.

5.24 Find the minimum sum-of-products expression for
(a) 2 m(0,2,3,5,6,7,11,12,13)
(b) 2 m(2,4,8) + % d(0,3,7)
(¢) 2m(1,5,6,7,13) + % d(4,8)
(d) fw,x,y,z) =2m(0,3,5,7,8,9,10,12,13) + X d(1, 6,11, 14)
(e) I M(0,1,2,5,7,9,11) « 11 D(4,10,13)

5.25 Work Problem 5.24 for the following:
(a) f(a, b, ¢, d)=2%2m(1,3,4,5,7,9,13,15)
(b) f(a, b, c,d) =11 M(0,3,5,8,11)
(¢) f(a, b, c,d)=%2m(0,2,6,9,13,14) + 3 d(3, 8, 10)
(d) f(a,b,c,d) =11 M(0,2,6,7,9,12,13) « 11 D(1,3,5)

5.26 Find the minimum product of sums for the following. Underline the essential prime
implicants in your answer.
(a) 11 M(0,2,4,5,6,9,14) « [1 D(10,11)
(b) 2 m(1,3,8,9,15) + 3 d(6,7,12)

5.27 Find a minimum sum-of-products and a minimum product-of-sums expression for
each function:
(a) f(A,B,C,D) =11 M(0,2,10,11,12,14,15) « 11 D(5,7)
®) fw,x,y,z) =32m(0,3,5,7,8,9,10,12,13) + = d(1, 6,11, 14)

5.28 A logic circuit realizes the function F(a, b, ¢,d) = a’'b’ + a’cd + ac'd + ab'd’. Assuming
that @ = ¢ never occurs when b = d = 1, find a simplified expression for F.

5.29 Given F= AB'D' + A'B+ A'C + CD.
(a) Use a Karnaugh map to find the maxterm expression for F (express your
answer in both decimal and algebric notation).
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(b) Use a Karnaugh map to find the minimum sum-of-products form for F'.
(¢) Find the minimum product of sums for F.

5.30 Assuming that the inputs ABCD = 0101, ABCD = 1001, ABCD = 1011 never
occur, find a simplified expression for

F=A'BC'D+ A'B'D + A'CD + ABD + ABC
5.31 Find all of the prime implicants for each of the functions plotted on page 150.

5.32 Find all of the prime implicants for each of the plotted functions:

bc bc
de 00 01 11 10 de 00 01 11 10
1 1 1
00 00 1 1
1 1 1
01 01
a 1 1 1 1 a
1 1
7 7
1 1 1 1
11 11
1 1 1 1 1
1 1
10 10
1 1 1 1
F G

5.33 Given that f(a, b, ¢, d, e) = % m(6,7,9,11,12,13,16, 17, 18,20, 21, 23, 25, 28), using a
Karnaugh map,
(a) Find the essential prime implicants (three).
(b) Find the minimum sum of products (7 terms).
(c) Find all of the prime implicants (twelve).

5.34 A logic circuit realizing the function f has four inputs a, b, ¢, d. The three inputs q,
b, and c are the binary representation of the digits O through 7 with a being the
most significant bit. The input d is an odd-parity bit; that is, the value of d is such
that g, b, ¢, and d always contains an odd number of 1’s. (For example, the digit 1 is
represented by abc = 001 and d = 0, and the digit 3 is represented by abcd =
0111.) The function f has value 1 if the input digit is a prime number. (A number is
prime if it is divisible only by itself and 1; 1 is considered to be prime, and 0 is not.)
(a) Draw a Karnaugh map for f.

(b) Find all prime implicants of f.

(c) Find all minimum sum of products for f.
(d) Find all prime implicants of f.

(e) Find all minimum product of sums for f.
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5.35 The decimal digits 0 though 9 are represented using five bits A, B, C, D, and E. The
bits A, B, C, and D are the BCD representation of the decimal digit, and bit E is a
parity bit that makes the five bits have odd parity. The function F(A, B, C, D, E) has
value 1 if the decimal digit represented by A, B, C, D, and E is divisible by either 3 or
4. (Zero is divisible by 3 and 4.)

(a) Draw a Karnaugh map for f.

(b) Find all prime implicants of f. (Prime implicants containing only don’t-cares
need not be included.)

(c) Find all minimum sum of products for f.

(d) Find all prime implicants of f".

(e) Find all minimum product of sums for f.

5.36 Rework Problem 5.35 assuming the decimal digits are represented in excess-3 rather
than BCD.

5.37 The function F(A, B, C, D, E) = % m(1,7,8,13,16,19) + X d(0, 3,5, 6,9, 10, 12, 15,
17,18, 20,23, 24, 27, 29, 30).
(a) Draw a Karnaugh map for f.
(b) Find all prime implicants of f. (Prime implicants containing only don’t-cares
need not be included.)
(c) Find all minimum sum of products for f.
(d) Find all prime implicants of f".
(e) Find all minimum product of sums for f.

5.38 F(a,b,c,d,e) =% m(0,1,4,5,9,10,11, 12, 14, 18, 20, 21, 22, 25, 26, 28)

(a) Find the essential prime implicants using a Karnaugh map, and indicate why
each one of the chosen prime implicants is essential (there are four essential
prime implicants).

(b) Find all of the prime implicants by using the Karnaugh map (there are 13 in all).

5.39 Find the minimum sum-of-products expression for F. Underline the essential prime
implicants in this expression.
(a) f(a, b, c,d,e) =% m(0,1,3,4,6,7,8,10, 11,15, 16, 18,19, 24, 25, 28, 29, 31)
+2d(5,9,30)
(b) f(a,b,c,d,e) =% m(1,3,5,8,9, 15,16, 20,21, 23,27, 28, 31)

5.40 Work Problem 5.39 with
F(A,B,C,D, E) =11 M(2,3,4,8,9,10, 14,15, 16, 18, 19, 20, 23, 24, 30, 31)

5.41 Find the minimum sum-of-products expression for F. Underline the essential prime
implicants in your expression.

F(A,B,C,D,E) =3 m(0,2,3,5,8,11,13,20,25,26,30) + S d(6,7, 9, 24)

542 F(V,W,X,Y,Z)=11M(0,3,5,6,7,8,11,13,14,15,18,20,22,24) « 11 D(1,2,16,17)
(a) Find a minimum sum-of-products expression for F. Underline the essential
prime implicants.
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(b) Find a minimum product-of-sums expression for F. Underline the essential
prime implicants.

5.43 Find the minimum product of sums for
(a) F(a, b, ¢, d,e) =32m(1,2,3,4,5,6,25,26,27,28,29,30,31)
(b) F(a, b, ¢, d,e) =2 m(1,5,12,13,14,16,17,21,23,24,30,31) + X d(0,2,3,4)

5.44 Find a minimum product-of-sums expression for each of the following functions:
(a) Fiv, w, x, ¥, z) = 2 m(4,5,8,9,12,13, 18,20, 21, 22, 25, 28, 30, 31)
(b) F(a, b, ¢, d,e) =11 M(2,4,5,6,8,10,12,13,16, 17,18, 22,23, 24)
« 11 D(0,11,30,31)

5.45 Find the minimum sum of products for each function. Then, make the specified
minterm a don’t-care and verify that the minimum sum of products is unchanged.
Now, start again with the original expression and find each minterm which could
individually be made a don’t-care, without changing the minimum sum of products.
(a) F(A,B,C,D)=A'C' + A'B'+ ACD'+ BC'D, minterm 2
(b) F(A,B,C,D)=A'BD + AC'D + AB' + BCD + A’'C’'D, minterm 7

546 F(V,W, XY, Z) =11 M(0,3,6,9,11, 19, 20, 24, 25, 26, 27, 28, 29, 30)
« 11 D(1,2,12,13)
(a) Find two minimum sum-of-products expressions for F.
(b) Underline the essential prime implicants in your answer and tell why each one
is essential.
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Quine-McCluskey Method

Objectives

1. Find the prime implicants of a function by using the Quine-McCluskey
method. Explain the reasons for the procedures used.

2. Define prime implicant and essential prime implicant.

3. Given the prime implicants, find the essential prime implicants and a min-
imum sum-of-products expression for a function, using a prime implicant
chart and using Petrick’s method.

4. Minimize an incompletely specified function, using the Quine-McCluskey
method.

5. Find a minimum sum-of-products expression for a function, using the
method of map-entered variables.

159
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Study Guide

1. Review Section 5.1, Minimum Forms of Switching Functions.

2. Read the introduction to this unit and, then, study Section 6.1. Determination of
Prime Implicants.

(a) Using variables A, B, C, D, and E, give the algebraic equivalent of
10110 + 10010 = 10-10
10-10 + 10-11 = 10-1-

(b) Why will the following pairs of terms not combine?
01101 + 00111
10-10 + 001-0

(c) When using the Quine-McCluskey method for finding prime implicants,
why is it necessary to compare terms only from adjacent groups?

(d) How can you determine if two minterms from adjacent groups will com-
bine by looking at their decimal representations?

(e) When combining terms, why is it permissible to use a term which has
already been checked off?

(f) In forming Column II of Table 6-1, note that terms 10 and 14 were com-
bined to form 10, 14 even though both 10 and 14 had already been checked
off. If this had not been done, which term in Column II could not be elim-
inated (checked off)?

(g) In forming Column III of Table 6-1, note that minterms 0, 1, 8, and 9 were
combined in two different ways to form —00-. This is equivalent to looping
the minterms in two different ways on the Karnaugh map, as shown.

01 11 10 cd 00 01 11 10 cd 00 01 11 10

00

01

1

0, 1)+@8,9 0,8)+(1,9) 0,1,8,9)
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(h) Using a map, find all of the prime implicants of Equation (6-2) and com-
pare your answer with Equation (6-3).

(i) The prime implicants of f (a, b, ¢, d ) = X m(4,5,6,7,12,13, 14, 15) are to
be found using the Quine-McCluskey method. Column III is given; find
Column IV and check off the appropriate terms in Column III.

Column Il Column IV
@ 5,6 7) 01-- 00 01 11 10
(4, 5,12, 13) -10- 00
(4, 6, 12, 14) -1-0
(5,7, 13, 15) -1-1 01
(6, 7, 14,15) -11-

(12, 13, 14, 15) 11-- 1

10

Check your answer using a Karnaugh map.

3. (a) Listall seven product term implicants of F(a, b, ¢) = % m(0,1,5,7)

Which of these implicants are prime?
Why is a’c not an implicant?
(b) Define a prime implicant.

(c) Why must every term in a minimum sum-of-products expression be a
prime implicant?
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(d) Given that F(A, B, C, D) = 3 m(0,1,4,5,7,10, 15), which of the follow-
ing terms are not prime implicants and why?

A'B'C’ A'C BCD ABC AB'CD’
4. Study Section 6.2, The Prime Implicant Chart.

(a) Define an essential prime implicant.

(b) Find all of the essential prime implicants from the following chart.

abcd | 0451011121315
(0,49 0-00 X X
4,5 12,13) - 10 - X X X X
13,15) 11 -1 X X
11,15) 1 - 11 X X
(10,11) 1 0 1 - X X

Check your answer using a Karnaugh map.
(c) Why must all essential prime implicants of a function be included in the

minimum sum of products?

(d) Complete the solution of Table 6-5.
(e) Work Programmed Exercise 6.1.
(f) Work Problems 6.2 and 6.3.

5. Study Section 6.3, Petrick’s Method (optional).

(a) Consider the following reduced prime implicant chart for a function F:

| my, ms M; My

P, bd X X X
P, b X X X
P; ab X X X

P, cd X X

We will find all minimum solutions using Petrick’s method. Let P; = 1
mean the prime implicant in row P; is included in the solution.

Which minterm is covered iff (P; + P;) = 1?

Write a sum term which is 1 iff m, is covered.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Quine-McCluskey Method 163

Write a product-of-sum terms which is 1 iff all m,, ms, m,, and m; are all
covered:
P=
(b) Reduce P to a minimum sum of products. (Your answer should have four
terms, each one of the form P;P;.)
P=
If P,P, = 1, which prime implicants are included in the solution?
How many minimum solutions are there?
Write out each solution in terms of a, b, ¢, and d.

(1 F= (2 F=
() F= (4) F=
Study Section 6.4, Simplification of Incompletely Specified Functions.

a are don’t-care terms treated like required minterms when finding the
Why don’t t treated like req d t hen finding th
prime implicants?

(b) Why are the don’t-care terms not listed at the top of the prime implicant
chart when finding the minimum solution?

(c) Work Problem 6.4.
(d) Work Problem 6.5, and check your solution using a Karnaugh map.

If you have LogicAid or a similar computer program available, use it to check
your answers to some of the problems in this unit. LogicAid accepts Boolean
functions in the form of equations, minterms or maxterms, and truth tables. It
finds simplified sum-of-products and product-of-sums expressions for the
functions using a modified version of the Quine-McCluskey method or
Espresso-1I. It can also find one or all of the minimum solutions using
Petrick’s method.

Study Section 6.5, Simplification Using Map-Entered Variables.

(a) For the following map, find MS,, MS,, and F. Verify that your solution for
F is minimum by using a four-variable map.
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(b) Use the method of map-entered variables to find an expression for F from
the following map. Treat C and C’ as if they were independent variables. Is
the result a correct representation of F? Is it minimum?

(c) Work Problem 6.6.

9. In this unit you have learned a “turn-the-crank” type procedure for finding mini-
mum sum-of-products forms for switching functions. In addition to learning how
to “turn the crank” and grind out minimum solutions, you should have learned
several very important concepts in this unit. In particular, make sure you know:

(a) What a prime implicant is

(b) What an essential prime implicant is

(c) Why the minimum sum-of-products form is a sum of prime implicants

(d) How don’t-cares are handled when using the Quine-McCluskey method
and the prime implicant chart

10. Reread the objectives of the unit. If you are satisfied that you can meet the
objectives, take the readiness test.

Quine-McCluskey Method

The Karnaugh map method described in Unit 5 is an effective way to simplify switch-
ing functions which have a small number of variables. When the number of variables
is large or if several functions must be simplified, the use of a digital computer is
desirable. The Quine-McCluskey method presented in this unit provides a systemat-
ic simplification procedure which can be readily programmed for a digital computer.
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The Quine-McCluskey method reduces the minterm expansion (standard sum-
of-products form) of a function to obtain a minimum sum of products. The procedure
consists of two main steps:

1. Eliminate as many literals as possible from each term by systematically
applying the theorem XY + XY’ = X. The resulting terms are called prime
implicants.

2. Use a prime implicant chart to select a minimum set of prime implicants which,
when ORed together, are equal to the function being simplified and which con-
tain a minimum number of literals.

Determination of Prime Implicants

In order to apply the Quine-McCluskey method to determine a minimum sum-
of-products expression for a function, the function must be given as a sum of
minterms. (If the function is not in minterm form, the minterm expansion can be
found by using one of the techniques given in Section 5.3.) In the first part of the
Quine-McCluskey method, all of the prime implicants of a function are systematical-
ly formed by combining minterms. The minterms are represented in binary notation
and combined using

XY+ XY =X (6-1)

where X represents a product of literals and Y is a single variable. Two minterms will
combine if they differ in exactly one variable. The examples given below show both
the binary notation and its algebraic equivalent.

AB'CD' + AB'CD = AB'C
1010+1011=101 - (the dash indicates a missing variable)

—_— =

XY X Y X

A'BC'D + A’BCD’' (will not combine)
0101+0110 (will not combine)

In order to find all of the prime implicants, all possible pairs of minterms should
be compared and combined whenever possible. To reduce the required number of
comparisons, the binary minterms are sorted into groups according to the number
of 1’s in each term. Thus,

fa,b,c,d) =3 m(0,1,2,5,6,7,8,9,10, 14) (6-2)
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is represented by the following list of minterms:

0000

0001
0010
1000

0101
0110
1001

1010

0111
1110

o

group 0

group 1 {

group 2

—_
A (OO NN |0 -

group 3

—_

In this list, the term in group 0 has zero 1’s, the terms in group 1 have one 1, those
in group 2 have two 1’s, and those in group 3 have three 1’s.

Two terms can be combined if they differ in exactly one variable. Comparison of
terms in nonadjacent groups is unnecessary because such terms will always differ in
at least two variables and cannot be combined using XY + XY’ = X. Similarly, the
comparison of terms within a group is unnecessary because two terms with the same
number of 1’s must differ in at least two variables. Thus, only terms in adjacent
groups must be compared.

First, we will compare the term in group 0 with all of the terms in group 1. Terms
0000 and 0001 can be combined to eliminate the fourth variable, which yields 000—.
Similarly, 0 and 2 combine to form 00-0 (a’b’'d"), and 0 and 8 combine to form —000
(b'c’d"). The resulting terms are listed in Column II of Table 6-1.

Whenever two terms combine, the corresponding decimal numbers differ by a
power of 2 (1, 2, 4, 8, etc.). This is true because when the binary representations
differ in exactly one column and if we subtract these binary representations, we

TABLE 6-1 Column | Column 1l Column 1l

Determination of  4,54p 0 0000 0,1 000- v/ 0,1,89 -00-
Prime Implicants 0001 0,2 00-0 v/ 0,2,810 -0-0

0010 0,8 -000 0;8-19—066-
1000 1,5 0-01 0;-8216—6-0
0101 1,9 -001 2,6,10,14 --10
0110 2,6 0-10 21064 —10
1001 2,10 -010
1010 8,9 100-
0111 8,10 10-0
1110 57 01-1
6,7 011-

6,14 -110 v/

10,14 1-10 v

AN

group 1

group 2

—_ —_
A NO O OO0 LT N =|O

DN N N N Y N N NN
NN SN NN

group 3
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get a 1 only in the column in which the difference exists. A binary number with a
1 in exactly one column is a power of 2.

Because the comparison of group 0 with groups 2 and 3 is unnecessary, we proceed
to compare terms in groups 1 and 2. Comparing term 1 with all terms in group 2, we find
that it combines with 5 and 9 but not with 6 or 10. Similarly, term 2 combines only with
6 and 10, and term 8 only with 9 and 10. The resulting terms are listed in Column II.
Each time a term is combined with another term, it is checked off. A term may be used
more than once because X + X = X. Even though two terms have already been com-
bined with other terms, they still must be compared and combined if possible. This is
necessary because the resultant term may be needed to form the minimum sum solu-
tion. At this stage, we may generate redundant terms, but these redundant terms will
be eliminated later. We finish with Column I by comparing terms in groups 2 and 3.
New terms are formed by combining terms 5 and 7,6 and 7, 6 and 14, and 10 and 14.

Note that the terms in Column II have been divided into groups, according to the
number of 1’s in each term. Again, we apply XY + XY’ = X to combine pairs of terms
in Column II. In order to combine two terms, the terms must have the same variables,
and the terms must differ in exactly one of these variables. Thus, it is necessary only to
compare terms which have dashes (missing variables) in corresponding places and
which differ by exactly one in the number of 1’s.

Terms in the first group in Column II need only be compared with terms in the sec-
ond group which have dashes in the same places. Term 000- (0, 1) combines only with
term 100~ (8, 9) to yield —00-. This is algebraically equivalent to a'b’c’ + ab’c’ = b'c’.
The resulting term is listed in Column III along with the designation 0, 1,8, 9 to indicate
that it was formed by combining minterms 0, 1, 8, and 9. Term (0, 2) combines only with
(8,10),and term (0, 8) combines with both (1,9) and (2, 10). Again, the terms which have
been combined are checked off. Comparing terms from the second and third groups in
Column II, we find that (2,6) combines with (10, 14), and (2, 10) combines with (6,14).

Note that there are three pairs of duplicate terms in Column III. These duplicate
terms were formed in each case by combining the same set of four minterms in a dif-
ferent order. After deleting the duplicate terms, we compare terms from the two
groups in Column III. Because no further combination is possible, the process ter-
minates. In general, we would keep comparing terms and forming new groups of
terms and new columns until no more terms could be combined.

The terms which have not been checked off because they cannot be combined
with other terms are called prime implicants. Because every minterm has been
included in at least one of the prime implicants, the function is equal to the sum of
its prime implicants. In this example we have

f=a'c'd +a'bd + a'bc + b'c" + b'd + cd’ (6-3)
(1,5 (5,7 (6,7) (0,1,8,9) (0,2,8,10) (2,6,10,14)

In this expression, each term has a minimum number of literals, but the number
of terms is not minimum. Using the consensus theorem to eliminate redundant
terms yields

f=abd +b'c + cd (6-4)

which is the minimum sum-of-products expression for f. Section 6.2 discusses a bet-
ter method of eliminating redundant prime implicants using a prime implicant chart.
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Next, we will define implicant and prime implicant and relate these terms to the
Quine-McCluskey method.

Definition Given a function F of n variables, a product term P is an implicant of F iff for every
combination of values of the » variables for which P = 1, Fis also equal to 1.

In other words, if for some combination of values of the variables, P =1 and F' = 0,
then P is not an implicant of F. For example, consider the function

F(a,b,c) = a'b'c’ + ab'c’ + ab’c + abc = b'c’ + ac (6-5)

Ifa’b’c’ = 1, then F = 1;if ac = 1, then F = 1; etc. Hence, the terms a'b’c’, ac, etc., are
implicants of F. In this example, bc is not an implicant of F because when a = 0 and
b=c=1,bc=1and F = 0. In general, if F is written in sum-of-products form, every
product term is an implicant. Every minterm of F'is also an implicant of F, and so is any
term formed by combining two or more minterms. For example, in Table 6-1, all of the
terms listed in any of the columns are implicants of the function given in Equation (6-2).

Definition A prime implicant of a function F is a product term implicant which is no longer
an implicant if any literal is deleted from it.

In Equation (6-5), the implicant a'b’c’ is not a prime implicant because a’ can
be eliminated, and the resulting term (b'c’") is still an implicant of F. The impli-
cants b'c’ and ac are prime implicants because if we delete a literal from either
term, the term will no longer be an implicant of F. Each prime implicant of a func-
tion has a minimum number of literals in the sense that no more literals can be
eliminated from it by combining it with other terms.

The Quine-McCluskey method, as previously illustrated, finds all of the product
term implicants of a function. The implicants which are nonprime are checked off in
the process of combining terms so that the remaining terms are prime implicants.

A minimum sum-of-products expression for a function consists of a sum of some
(but not necessarily all) of the prime implicants of that function. In other words, a
sum-of-products expression which contains a term which is not a prime implicant can-
not be minimum. This is true because the nonprime term does not contain a minimum
number of literals—it can be combined with additional minterms to form a prime
implicant which has fewer literals than the nonprime term. Any nonprime term in a
sum-of-products expression can thus be replaced with a prime implicant, which
reduces the number of literals and simplifies the expression.

6.2 The Prime Implicant Chart

The second part of the Quine-McCluskey method employs a prime implicant chart
to select a minimum set of prime implicants. The minterms of the function are listed
across the top of the chart, and the prime implicants are listed down the side. A prime
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implicant is equal to a sum of minterms, and the prime implicant is said to cover these
minterms. If a prime implicant covers a given minterm, an X is placed at the inter-
section of the corresponding row and column. Table 6-2 shows the prime implicant
chart derived from Table 6-1. All of the prime implicants (terms which have not been
checked off in Table 6-1) are listed on the left.

In the first row, X’s are placed in columns 0, 1, 8, and 9, because prime implicant
b’c’ was formed from the sum of minterms 0, 1, 8, and 9. Similarly, X’s are placed in
columns 0, 2, 8, and 10 opposite the prime implicant b'd" and so forth.

01256789 10 14
0, 1,8,9) b'c X X X ®
(0, 2, 8, 10) b'd’ X X X X
(2, 6, 10, 14) cd’ X X X ®
(1, 5) a'c'd X X
(5, 7) a'bd X X
(6, 7) a'bc X X

If a minterm is covered by only one prime implicant, then that prime implicant is
called an essential prime implicant and must be included in the minimum sum of prod-
ucts. Essential prime implicants are easy to find using the prime implicant chart. If a
given column contains only one X, then the corresponding row is an essential prime
implicant. In Table 6-2, columns 9 and 14 each contain one X, so prime implicants b’c’
and cd’ are essential.

Each time a prime implicant is selected for inclusion in the minimum sum, the
corresponding row should be crossed out. After doing this, the columns which cor-
respond to all minterms covered by that prime implicant should also be crossed out.
Table 6-3 shows the resulting chart when the essential prime implicants and the cor-
responding rows and columns of Table 6-2 are crossed out. A minimum set of prime
implicants must now be chosen to cover the remaining columns. In this example,
a'bd covers the remaining two columns, so it is chosen. The resulting minimum sum
of products is

f=b'c +cd +a'bd

which is the same as Equation (6-4). Note that even though the term a’'bd is includ-
ed in the minimum sum of products, a’bd is not an essential prime implicant. It is
the sum of minterms ms and mi5; ms is also covered by a’c’d, and m; is also covered
by a'bc.

01256789 10 14
(0,1,8,9 b'c K—% K
(0,2,8 100 b'd ;E >|E ;E >|E
(2,6,10,14) cd’ % / N2
(1,5 a'cd X
(5,7) a'bd X X
(6,7) a'bc X
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When the prime implicant chart is constructed, some minterms may be covered
by only a single prime implicant, although other minterms may be covered by two or
more prime implicants. A prime implicant is essential (or necessary) to a function f'iff
the prime implicant contains a minterm which is not covered by any other prime
implicant of f. The essential prime implicants are chosen first because all essential
prime implicants must be included in every minimum sum. After the essential prime
implicants have been chosen, the minterms which they cover can be eliminated from
the prime implicant chart by crossing out the corresponding columns. If the essential
prime implicants do not cover all of the minterms, then additional nonessential prime
implicants are needed. In simple cases, the nonessential prime implicants needed to
form the minimum solution may be selected by trial and error. For larger prime
implicant charts, additional procedures for chart reduction can be employed.! Some
functions have two or more minimum sum-of-products expressions, each having the
same number of terms and literals. The next example shows such a function.

—— A prime implicant chart which has two or more X’s in every column is called a cyclic
Example prime implicant chart. The following function has such a chart:

F=%2m(0,1,2,5,6,7) (6-6)
Derivation of prime implicants:
0 000 v 0,1 00-
1 001 v 0,2 00
2 010 v 1.5 01
S 101 v 2,6 -10
6 110 v 5.7 1-1
7 111 v 6,7 11-

Table 6-4 shows the resulting prime implicant chart. All columns have two X’s, so
we will proceed by trial and error. Both (0, 1) and (0, 2) cover column 0, so we will try
(0,1). After crossing out row (0, 1) and columns 0 and 1, we examine column 2, which
is covered by (0, 2) and (2, 6). The best choice is (2, 6) because it covers two of the
remaining columns while (0,2) covers only one of the remaining columns. After cross-
ing out row (2,6) and columns 2 and 6, we see that (5,7) covers the remaining columns
and completes the solution. Therefore, one solution is F = a'b’ + bc’ + ac.

TABLE 6-4 012567

® — (0,1) a'b’

0,2) a'c Q
(1,5) b'c I
@ — (2,6) bc

® — (5,7) ac
(6,7) ab

X—X

'For a discussion of such procedures, see E. J. McCluskey, Logic Design Principles. (Prentice-Hall, 1986).
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However, we are not guaranteed that this solution is minimum. We must go back
and solve the problem over again starting with the other prime implicant that cov-
ers column 0. The resulting table (Table 6-5) is

TABLE 6-5 012567
P, 0,1 a'b’ X
P, 0,2) a'c
P (1,5) b'c X X
P, (2,6) bc X
Ps (5,7) ac X X
P (6,7) ab X X

Finish the solution and show that F = a’c’ + b'c + ab. Because this has the same
number of terms and same number of literals as the expression for F derived in
Table 6-4, there are two minimum sum-of-products solutions to this problem.
Compare these two minimum solutions for Equation (6-6) with the solutions
obtained in Figure 5-9 using Karnaugh maps. Note that each minterm on the map
can be covered by two different loops. Similarly, each column of the prime implicant
chart (Table 6-4) has two X’s, indicating that each minterm can be covered by two
different prime implicants.

6.3 Petrick’s Method

Petrick’s method is a technique for determining all minimum sum-of-products
solutions from a prime implicant chart. The example shown in Tables 6-4 and 6-5
has two minimum solutions. As the number of variables increases, the number of
prime implicants and the complexity of the prime implicant chart may increase
significantly. In such cases, a large amount of trial and error may be required to
find the minimum solution(s). Petrick’s method is a more systematic way of find-
ing all minimum solutions from a prime implicant chart than the method used
previously. Before applying Petrick’s method, all essential prime implicants and
the minterms they cover should be removed from the chart.

We will illustrate Petrick’s method using Table 6-5. First, we will label the rows of
the table Py, P,, P5, etc. We will form a logic function, P, which is true when all of the
minterms in the chart have been covered. Let P, be a logic variable which is true
when the prime implicant in row P, is included in the solution, P, be a logic variable
which is true when the prime implicant in row P, is included in the solution, etc.
Because column 0 has X’s in rows P; and P,, we must choose row P; or P, in order
to cover minterm 0. Therefore, the expression (P; + P,) must be true. In order to
cover minterm 1, we must choose row P, or Ps; therefore, (P, + P;) must be true. In
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order to cover minterm 2, (P, + P,) must be true. Similarly, in order to cover
minterms 5, 6, and 7, the expressions (P; + Ps), (P, + Pg) and (Ps + P4) must be true.
Because we must cover all of the minterms, the following function must be true:

P = (P, + Py))(Py + P3)(P, + P)(P; + Ps)(Py + Pe)(Ps + Pg) = 1

The expression for P in effect means that we must choose row P, or P,, and row P;
or P;, and row P, or P,, etc.

The next step is to reduce P to a minimum sum of products. This is easy because
there are no complements. First, we multiply out,using(X + Y)Y (X + Z)=X+Y Z
and the ordinary distributive law:

P = (P + P,P5)(Py + P, Pg) (Ps + P3P)
= (PP, + P P,Ps+ P, Py P, + P, P;P;)(Ps+ P;P)
P, P,Ps+ P, P,PsPs; + P, P; P, Ps + P, Py Ps Pg + P, P; P, P
+ P, P, Py P¢ + P, Py P, Ps + P, Py P

Next, we use X + XY = X to eliminate redundant terms from P, which yields
p = pPP,Ps + P,P,PsPs + P,P;P,Ps + P,P;P,Ps + P,P;P¢

Because P must be true (P = 1) in order to cover all of the minterms, we can
translate the equation back into words as follows. In order to cover all of the
minterms, we must choose rows P; and P, and Ps, or rows P; and P, and Ps and
Pg,or...orrows P, and P; and Pg. Although there are five possible solutions, only
two of these have the minimum number of rows. Thus, the two solutions with the
minimum number of prime implicants are obtained by choosing rows P, P,, and
Ps or rows P,, P;, and Pg. The first choice leads to F = a’b’ + bc’ + ac, and the
second choice to F = a'c’ + b'c + ab, which are the two minimum solutions
derived in Section 6.2.
In summary, Petrick’s method is as follows:

1. Reduce the prime implicant chart by eliminating the essential prime implicant

rows and the corresponding columns.

Label the rows of the reduced prime implicant chart P,, P,, P;, etc.

Form a logic function P which is true when all columns are covered. P consists

of a product of sum terms, each sum term having the form (P, + P; + ...),

where P;), P;; . .. represent the rows which cover column i.

4. Reduce P to a minimum sum of products by multiplying out and applying
X+ XY =X

5. Each term in the result represents a solution, that is, a set of rows which covers all
of the minterms in the table. To determine the minimum solutions (as defined in
Section 5.1), find those terms which contain a minimum number of variables. Each
of these terms represents a solution with a minimum number of prime implicants.

6. For each of the terms found in step 5, count the number of literals in each prime
implicant and find the total number of literals. Choose the term or terms which
correspond to the minimum total number of literals, and write out the corre-
sponding sums of prime implicants.

W
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The application of Petrick’s method is very tedious for large charts, but it is easy to
implement on a computer.

Simplification of Incompletely
Specified Functions

Given an incompletely specified function, the proper assignment of values to the
don’t-care terms is necessary in order to obtain a minimum form for the function. In
this section, we will show how to modify the Quine-McCluskey method in order to
obtain a minimum solution when don’t-care terms are present. In the process of find-
ing the prime implicants, we will treat the don’t-care terms as if they were required
minterms. In this way, they can be combined with other minterms to eliminate as
many literals as possible. If extra prime implicants are generated because of the
don’t-cares, this is correct because the extra prime implicants will be eliminated in
the next step anyway. When forming the prime implicant chart, the don’t-cares are
not listed at the top. This way, when the prime implicant chart is solved, all of the
required minterms will be covered by one of the selected prime implicants. However,
the don’t-care terms are not included in the final solution unless they have been used
in the process of forming one of the selected prime implicants. The following example
of simplifying an incompletely specified function should clarify the procedure.

F(A,B,C,D) = ~m(2,3,7,9,11,13) + X d(1, 10, 15)
(the terms following d are don’t-care terms)

The don’t-care terms are treated like required minterms when finding the prime
implicants:

10001 (1,3) 00-1/ (1,3,9,11) —0-1
2 0010 v/ (1,9) -001 v (2,3,10,11) 01—
3 0011/ (2,3) 001-v (B.7.11,15) --11
9 1001 v/ (2,10) —010v/  (9,11,13,15) 1--1
10 1010/  (3,7) 011/
7 011l v (3,11) 011 v/
11 1011 v 9,11) 10-1 v
13 1101 v (9,13) 1-01 v/
15 1ilvy  (10,11) 101-v

(7,15) —111 v

(11,15) 1-11v
(13,15) 11-1v
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The don’t-care columns are omitted when forming the prime implicant chart:

2 37 91113

(1,3,9 11)
*(2, 3,10, 11) % s
*(3, 7, 11, 15) F=B'C+CD + AD
*(9, 11, 13, 15)

*indicates an essential prime implicant.

Note that although the original function was incompletely specified, the final
simplified expression for F is defined for all combinations of values for A, B, C, and
D and is therefore completely specified. In the process of simplification, we have
automatically assigned values to the don’t-cares in the original truth table for F. If
we replace each term in the final expression for F by its corresponding sum of
minterms, the result is

F=(my + my+ myy+ my) + (us + my + my + mys) + (my + my + myz + nigs)
Because m;, and m,5 appear in this expression and m; does not, this implies that the

don’t-care terms in the original truth table for F have been assigned as follows:

for ABCD = 0001, F = 0; for 1010, F = 1; for 1111, F =1

6.5 Simplification Using Map-Entered Variables

Although the Quine-McCluskey method can be used with functions with a fairly
large number of variables, it is not very efficient for functions that have many vari-
ables and relatively few terms. Some of these functions can be simplified by using a
modification of the Karnaugh map method. By using map-entered variables,
Karnaugh map techniques can be extended to simplify functions with more than four
or five variables. Figure 6-1(a) shows a four-variable map with two additional vari-
ables entered in the squares in the map. When E appears in a square, this means that

FIGURE 6-1 AB AB AB AB
Use of Map- ¢p\_00 01 11 10 ¢p\_00 01 11 10 ¢p\_00 0L 11 10 ¢p\_00 01 11 10
Entered 00] 1 00 (1) 00| x 00
Variables
0| X|E|X|F 01 x X 01 [x 1] X 01| X [X 1]
1|1 |E|1]1 111 (1]1) nlx 1) x| x 11 X (x| x]
10] 1 X 10{(1) X 10] X X 10] X X
G E=F=0 E=1,F=0 E=0,F=1
MSy=A'B’ + ACD MS,;=A'D MS, =AD

(a) (b) © (d)
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if £ =1, the corresponding minterm is present in the function G, and if £ = 0, the
minterm is absent. Thus, the map represents the six-variable function

G(A,B,C,D,E,F) = my+ my + my + Ems + Em; + Fmg + my; + mys
(+ don’t-care terms)

where the minterms are minterms of the variables A, B, C, and D. Note that m, is
present in G only when F = 1.
We will now use a three-variable map to simplify the function:

F(A,B,C,D) = A'B'C + A'BC + A'BC'D + ABCD + (AB'C)

where the AB’C is a don’t-care term. Because D appears in only two terms, we will
choose it as a map-entered variable, which leads to Figure 6-2(a). We will simplify F by
first considering D = 0 and then D = 1. First set D = 0 on the map, and F reduces to
A'C. Setting D = 1 leads to the map of Figure 6-2(b). The two 1’s on the original map
have already been covered by the term A'C, so they are changed to X’s because we do
not care whether they are covered again or not. From Figure 6-2(b), when D = 1.Thus,
the expression

F=AC+D(C+AB)=AC+ CD + A'BD

gives the correct value of F both when D = 0 and when D = 1. This is a minimum
expression for F, as can be verified by plotting the original function on a four-variable
map; see Figure 6-2(c).

Next, we will discuss a general method of simplifying functions using map-entered
variables. In general, if a variable P; is placed in square m; of a map of function F, this
means that /=1 when P; = 1, and the variables are chosen so that m; = 1. Given a
map with variables P;, P,, ... entered into some of the squares, the minimum sum-
of-products form of F can be found as follows:

Find a sum-of-products expression for F of the form

FZMSO+P1MS1+P2MS2+

where
MS, is the minimum sum obtained by setting P, = P, = --- = 0.
FIGURE 6-2 A A DA
Simplification Using BC 0 1 BC 0 1 BC 00 01 11 10
a Map-Entered 00 00 00
Variable

X 01

ﬂ X (;?—
g D

Ba

ISP
o 3

(a) (b) (©)
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MS; is the minimum sum obtained by setting P; = 1, P, = 0 (j # 1), and replacing
all 1’s on the map with don’t-cares.

MS, is the minimum sum obtained by setting P, = 1, P, = 0 (j # 2) and replacing
all 1’s on the map with don’t-cares.

(Corresponding minimum sums can be found in a similar way for any remaining
map-entered variables.)

The resulting expression for I will always be a correct representation of F. This
expression will be minimum provided that the values of the map-entered variables
can be assigned independently. On the other hand, the expression will not general-
ly be minimum if the variables are not independent (for example, if P, = P3).

For the example of Figure 6-1(a), maps for finding MS,, MS, and MS, are shown
in Figures 6-1(b), (¢), and (d), where E corresponds to P; and F corresponds to P».
The resulting expression is a minimum sum of products for G:

G =A'B'"+ ACD + EA'D + FAD

After some practice, it should be possible to write the minimum expression
directly from the original map without first plotting individual maps for each of the
minimum sums.

6.6 Conclusion

We have discussed four methods for reducing a switching expression to a minimum
sum-of-products or a minimum product-of-sums form: algebraic simplification,
Karnaugh maps, Quine-McCluskey method, and Petrick’s method. Many other meth-
ods of simplification are discussed in the literature, but most of these methods are based
on variations or extensions of the Karnaugh map or Quine-McCluskey techniques.
Karnaugh maps are most useful for functions with three to five variables. The Quine-
McCluskey technique can be used with a high-speed digital computer to simplify func-
tions with up to 15 or more variables. Such computer programs are of greatest value
when used as part of a computer-aided design (CAD) package that assists with deriving
the equations as well as implementing them. Algebraic simplification is still valuable in
many cases, especially when different forms of the expressions are required. For prob-
lems with a large number of variables and a small number of terms, it may be impossi-
ble to use the Karnaugh map, and the Quine-McCluskey method may be very cumber-
some. In such cases, algebraic simplification may be the easiest method to use. In situa-
tions where a minimum solution is not required or where obtaining a minimum solution
requires too much computation to be practical, heuristic procedures may be used to sim-
plify switching functions. One of the more popular heuristic procedures is the Espresso-
II method,? which can produce near minimum solutions for a large class of problems.
The minimum sum-of-products and minimum product-of-sums expressions we
have derived lead directly to two-level circuits that use a minimum number of AND

2This method is described in R. K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis
(Kluwer Academic Publishers, 1984).
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and OR gates and have a minimum number of gate inputs. As discussed in Unit 7,
these circuits are easily transformed into circuits that contain NAND or NOR gates.
These minimum expressions may also be useful when designing with some types of
array logic, as discussed in Unit 9. However, many situations exist where minimum
expressions do not lead to the best design. For practical designs, many other factors
must be considered, such as the following:

What is the maximum number of inputs a gate can have?

What is the maximum number of outputs a gate can drive?

Is the speed with which signals propagate through the circuit fast enough?

How can the number of interconnections in the circuit be reduced?

Does the design lead to a satisfactory circuit layout on a printed circuit board
or on a silicon chip?

Until now, we have considered realizing only one switching function at a time.
Unit 7 describes design techniques and Unit 9 describes components that can be
used when several functions must be realized by a single circuit.

Programmed Exercise 6.1

Cover the answers to this exercise with a sheet of paper and slide it down as you
check your answers.
Find a minimum sum-of-products expression for the following function:

f(A,B,C,D,E) =3 m(0,2,3,5,7,9,11, 13, 14, 16, 18, 24, 26, 28, 30)

Translate each decimal minterm into binary and sort the binary terms into groups
according to the number of 1’s in each term.

Answer: 00000 v 0,2 000-0
00010 v
10000
00011
00101
01001
18 10010
24 11000
7 00111
11 01011
13 01101
14 01110
26 11010
28 11100
30 11110

—_
O L Wi\ N |O

Compare pairs of terms in adjacent groups and combine terms where possible.
(Check off terms which have been combined.)
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Answer: 00000 v 0,2 000-0v  0,2,16,18 —-00-0
00010v 0,16 —0000
10000 v/ 2,3 0001-
00o11v 2,18 -0010

00101 v 16,18 100-0v

01001 v 16,24 1-000
18 10010 v 3,7 00-11
24 11000v 3,11 0-011
7 00111 v 5,7 001-1
11 01011 v 5,13 0-101
13 01101 v 9,11 010-1
14 01110 9,13 01-01
26 11010 18,26 1-010
28 11100 v 24,26 110-0
30 11110v 24,28 11-00
14,30 -1110
26,30 11-10
28,30 111-0

—
O DN W\ DO

Now, compare pairs of terms in adjacent groups in the second column and combine
terms where possible. (Check off terms which have been combined.) Check your
work by noting that each new term can be formed in two ways. (Cross out duplicate
terms.)

Answer:  (third column)
0,2,16,18 -00-0 (check off (0,2), (16, 18), (0, 16), and (2, 18))
16,18,24,26  1-0-0 (check off (16, 18), (24, 26), (16, 24), and (18, 26))
24,26,28,30 11--0 (check off (24,26), (28, 30), (24, 28), and (26, 30))

Can any pair of terms in the third column be combined?
Complete the given prime implicant chart.

(0, 2, 16, 18)
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No pair of terms in the third column combine.

02357911 131416 18 24 26 28 30

(0, 2, 16, 18)
(16, 18, 24, 26)
(24, 26, 28, 30)

(2, 3)
B.7)
3,11
(5. 7)
(5, 13)
9, 11)
(9, 13)
(14, 30)

XX X X
X X X X
X X X X
XX
X X
X X
XX
X X
X X
X X
X X

Determine the essential prime implicants, and cross out the corresponding rows and

columns.

02357911 131416 18 24 26 28 30

*(0, 2, 16, 18)
(16, 18, 24, 26)
*(24, 26, 28, 30)
(2, 3)

3B.7)

3. 11)

(5.7)

(5, 13)

9,11

9, 13)

*(14, 30)

Ty

*Indicates an essential prime implicant.

Note that all remaining columns contain two or more X’s. Choose the first column
which has two X’s and then select the prime implicant which covers the first X in that
column. Then, choose a minimum number of prime implicants which cover the
remaining columns in the chart.
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Answer:

Answer:

Answer:
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02357911 131416 18 24 26 28 30

*(0, 2, 16, 18)
(16, 18, 24, 26)
*(24, 26, 28, 30)
(2, 3)

(3.7

— (3, 11)
—(5,7)

(5, 13)

9, 11)

]

— (9, 13)
o

By,

*(14, 30) %
*Indicates an essential prime implicant.

From this chart, write down the chosen prime implicants in 0, 1, and — notation.

Then, write the minimum sum of products in algebraic form.

-00-0, 11--0, 0-011, 001-1, 01-01, and -1110
f=B'C'E'+ ABE' + AAC'DE + A'B'CE + A'BD'E + BCDE'

The prime implicant chart with the essential prime implicants crossed out is repeated

here.

Find a second minimum sum-of-products solution.

02357911 131416 18 24 26 28 30

S5k
O/

*(0, 2, 16, 18)
(16, 18, 24, 26)
*(24, 26, 28, 30)
2, 3) X
3,7) X X
3,11) X
(5,7)
(5, 13) X X
9, 11)
9, 13) X X

”Ii

N

*(14, 30)
*Indicates an essential prime implicant.

Start by choosing prime implicant (5, 13).
f=BCDE' + BC'E' + ABE' + A'B'DE + A'CD'E + A'BC'E
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Problems

For each of the following functions, find all of the prime implicants, using the Quine-
McCluskey method.

(a) f(a,b,c,d) =2m(1,5,7,9,11,12, 14, 15)

(b) f(a,b,c,d)=2m(0,1,3,5,6,7,8,10, 14, 15)

Using a prime implicant chart, find a// minimum sum-of-products solutions for each
of the functions given in Problem 6.2.

For this function, find a minimum sum-of-products solution, using the Quine-
McCluskey method.
f(a,b,c,d) =%2m(1,3,4,5,6,7,10,12,13) + 2 d(2,9,15)

Find all prime implicants of the following function and then find all minimum solu-
tions using Petrick’s method:
F(A,B,C,D) = 3 m(9,12,13,15) + 3 d(1,4,5,7,8,11,14)

Using the method of map-entered variables, use four-variable maps to find a minimum
sum-of-products expression for
(a) F(A,B,C,D,E) =2m(0,4,5,7,9) + 2d(6,11) + E(m, + m,5), where the
m’s represent minterms of the variables A, B, C, and D.
(b) Z(A,B,C,D,E, F,G) = X m(0,3,13,15) + X d(1,2,7,9, 14)
+ E(mg + mg) + Fmy, + Gms

For each of the following functions, find all of the prime implicants using the Quine-
McCluskey method.

(a) fla,b,c,d) =2%m(0,3,4,5,7,9,11,13)

(b) fla,b,c,d) = ~2m(2,4,5,6,9,10,11, 12,13, 15)

Using a prime implicant chart, find all minimum sum-of-products solutions for each
of the functions given in Problem 6.7.

For each function, find a minimum sum-of-products solution using the Quine-
McCluskey method.

(a) fla,b,c,d) =S m(2,3,4,7,9,11,12,13,14) + 3 d(1, 10, 15)
(b) fla,b,c,d) =3 m(0,1,5,6,8,9,11,13) + 3 d(7, 10, 12)
(c) fla,b,c,d) =S m(3,4,6,7,8,9,11,13,14) + S d(2,5,15)

Work Problem 5.24(a) using the Quine-McCluskey method.

F(A,B,C,D,E) = Sm(0,2,6,7,8,10, 11, 12, 13, 14, 16, 18, 19, 29, 30)
+3d(4,9,21)
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6.13

6.14

6.15

6.16

6.17

6.18
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Find the minimum sum-of-products expression for F, using the Quine-McCluskey
method. Underline the essential prime implicants in this expression.

Using the Quine-McCluskey method, find all minimum sum-of-products expres-
sions for

(a) A, B,C D, E) =% m(0,1,2,3,4,8,9,10, 11, 19,21, 22, 23,27, 28, 29, 30)

(b) (A, B, C, D, E)=3m(0,1,2,4,8,11,13,14, 15,17, 18, 20, 21, 26, 27, 30, 31)

Using the Quine-McCluskey method, find all minimum product-of-sums expres-
sions for the functions of Problem 6.12.

(a) Using the Quine-McCluskey, method find all prime implicants of (A, B, C, D) =
> m(1,3,5,6,8,9,12,14,15) + X d(4, 10, 13). Identify all essential prime impli-
cants and find all minimum sum-of-products expressions.

(b) Repeat Part (a) for f'.

(a) Use the Quine-McCluskey method to find all prime implicants of f(a, b, ¢, d, €) =
> m(1,2,4,5,6,7,9,12,13,15,17,20,22,25,28,30). Find all essential prime impli-
cants, and find all minimum sum-of-products expressions.

(b) Repeat Part (a) for f'.

G(A,B,C,D,E, F) = ¥ m(1,2,3,16,17, 18, 19, 26, 32, 39, 48, 63)
+ 2 d(15, 28, 29, 30)
(a) Find all minimum sum-of-products expressions for G.
(b) Circle the essential prime implicants in your answer.
(c) If there were no don’t-care terms present in the original function, how would
your answer to part (a) change? (Do this by inspection of the prime implicant
chart; do not rework the problem.)

(a) Use the Quine-McCluskey procedure to find all prime implicants of the
function G(A, B, C, D, E, F) = X m(1,7, 11, 12, 15, 33, 35, 43, 47, 59, 60) +
3, d(30, 50,54, 58). Identify all essential prime implicants and find all minimum
sum-of-products expressions.

(b) Repeat Part (a) for G'.

The following prime implicant table (chart) is for a four-variable function f(A, B, C, D).
(a) Give the decimal representation for each of the prime implicants.

(b) List the maxterms of f.

(c) List the don’t-cares of f, if any.

(d) Give the algebraic expression for each of the essential prime implicants.

| 2 3 7 9 11 13
—0-1 X X X
—-01- X X X
--11 X X X
1--1 X X X
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6.19 Packages arrive at the stockroom and are delivered on carts to offices and laboratories
by student employees. The carts and packages are various sizes and shapes. The students
are paid according to the carts used. There are five carts and the pay for their use is
Cart C1: $2
Cart C2: §1
Cart C3: $4
Cart C4: $2
Cart C5: $2
On a particular day, seven packages arrive, and they can be delivered using the five
carts as follows:

C1 can be used for packages P1, P3, and P4.

C2 can be used for packages P2, PS5, and P6.

C3 can be used for packages P1, P2, PS, P6, and P7.
C4 can be used for packages P3, P6, and P7.

C5 can be used for packages P2 and P4.

The stockroom manager wants the packages delivered at minimum cost. Using
minimization techniques described in this unit, present a systematic procedure for
finding the minimum cost solution.

6.20 Use the Quine-McCluskey procedure to find all prime implicants of the function
h(A,B,C,D,E, F,G) =% m(24,28, 39, 47,70, 86, 83,92, 102, 105, 118).
Express the prime implicants algebraically.

6.21 Find all prime implicants of the following function, and then find all minimum solu-
tions using Petrick’s method:

F(A,B,C,D) = Sm(7,12,14,15) + 3 d(1,3,5, 8,10, 11, 13)

6.22 Using the method of map-entered variables, use four-variable maps to find a mini-
mum sum-of-products expression for
(a) F(A,B,C,D,E) = 3%m(0,4,6,13,14) + X d(2,9) + E(m; + my,)
(b) Z(A,B,C,D,E,F,G) =%m(2,5,6,9) + 2d(1,3,4,13,14)
+ E(my; + myp) + F(my) + G(my)

6.23 (a) Rework Problem 6.6(a), using a five-variable map.
(b) Rework Problem 6.6(a), using the Quine-McCluskey method. Note that you must
express F in terms of minterms of all five variables; the original four-variable
minterms cannot be used.

6.24 Using map-entered variables, find the minimum sum-of-products expressions for

the following function:
G=CE'F+ DEF + AD'E'F' + BDE'F + AD'EF'
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Multi-Level Gate Circuits
NAND and NOR Gates

Objectives

1. Design a minimal two-level or multi-level circuit of AND and OR gates to
realize a given function. (Consider both circuits with an OR gate at the
output and circuits with an AND gate at the output.)

2. Design or analyze a two-level gate circuit using any one of the eight basic
forms (AND-OR, NAND-NAND, OR-NAND, NOR-OR, OR-AND, NOR-NOR,
AND-NOR, and NAND-AND).

Design or analyze a multi-level NAND-gate or NOR-gate circuit.

4. Convert circuits of AND and OR gates to circuits of NAND gates or NOR
gates, and conversely, by adding or deleting inversion bubbles.

5. Design a minimal two-level, multiple-output AND-OR, OR-AND, NAND-
NAND, or NOR-NOR circuit using Karnaugh maps.

184
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Study Guide

1. Study Section 7.1, Multi-Level Gate Circuits.

(a) What are two ways of changing the number of levels in a gate circuit?

(b) By constructing a tree diagram, determine the number of gates, gate
inputs, and levels of gates required to realize Z; and Z,:

Z, =[(A+ B)C+ DE(F+ G)|H Z,=A + B[C + DE(F + G)]

Check your answers by drawing the corresponding gate circuits.

(c) In order to find a minimum two-level solution, why is it necessary to consid-
er both a sum-of-products form and a product-of-sums form for the function?

(d) One realization of Z = ABC(D + E) + FG is

Redraw the circuit so that it uses one less gate and so that the output of an
AND gate never goes directly to the input of another AND gate.
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(e) Work Problems 7.1 and 7.2. Unless otherwise specified, you may always
assume that both the variables and their complements are available as cir-
cuit inputs.

2. Study Section 7.2, NAND and NOR Gates

(a) For each gate, specify the missing inputs:

(b) What is meant by functionally complete set of logic gates?

(c) How can you show that a set of logic gates is functionally complete?

(d) Show that the NOR gate itself is functionally complete.

(e) Using NAND gates, draw a circuit for F = (A'(BC)")".

(f) Using NOR gates, draw a circuit for F = (X + Y)' + (X' + Z)")’

3. Study Section 7.3, Design of Two-Level NAND- and NOR-Gate Circuits.

(a) Draw the circuit corresponding to Equation (7-17).

(b) Derive Equation (7-18).

() Make sure that you understand the relation between Equations (7-13)
through (7-21) and the diagrams of Figure 7-11.
(d) Why is the NOR-NAND form degenerate?
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(e) What assumption is made about the types of inputs available when the
procedures for designing two-level NAND-NAND and NOR-NOR cir-
cuits are used?

(f) For these procedures the literal inputs to the output gate are comple-
mented but not the literal inputs to the other gates. Explain why. Use an
equation to illustrate.

(g) A general OR-AND circuit follows. Transform this to a NOR-NOR circuit
and prove that your transformation is valid.

(h) Work Problem 7.3.
Study Section 7.4, Design of Multi-Level NAND- and NOR-Gate Circuits.

(a) Verify that the NAND circuit of Figure 7-13 is correct by dividing the cor-
responding circuit of AND and OR gates into two-level subcircuits and
transforming each subcircuit.

(b) If you wish to design a two-level circuit using only NOR gates, should you
start with a minimum sum of products or a minimum product of sums?

(c) Note that direct conversion of a circuit of AND and OR gates to a NAND
gate circuit requires starting with an OR gate at the output, but the direct
conversion to a NOR gate circuit requires starting with an AND gate at
the output. This is easy to remember because a NAND is equivalent to an
OR with the inputs inverted:

and a NOR is equivalent to an AND with the inputs inverted:
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(d)
(e)

Convert the circuit of Figure 7-1(b) to all NAND gates.
Work Problems 7.4,7.5,7.6,and 7.7.

5. Study Section 7.5, Circuit Conversion Using Alternative Gate Symbols.

(a)

(b)

(©)

(d)

Determine the logic function realized by each of the following circuits:

Convert the circuit of Figure 7-13(a) to NAND gates by adding bubbles and
complementing input variables when necessary. (You should have added 12
bubbles. Your result should be similar to Figure 7-13(b), except some of the
NAND gates will use the alternative symbol.)

Draw a circuit of AND and OR gates for the following equation:

Z = A[BC + D + E(F + GH)]

Then convert to NOR gates by adding bubbles and complementing inputs
when necessary. (You should have added 10 bubbles and complemented
six input variables.)

‘Work Problem 7.8.

6. Study Section 7.6, Design of Two-Level, Multiple-Output Circuits.

(a)

(b)

In which of the following cases would you replace a term xy’ with xy'z + xy'z’?

(1) Neither xy’z or xy'z’ is used in another function.
(2) Both xy’z and xy'z’ are used in other functions.
(3) Term xy'z is used in another function, but xy’z’ is not.

In the second example (Figure 7-21), in f,, ¢ could have been replaced by
bc + b’c because bc and b'c were available “free” from f; and f;. Why was
this replacement not made?
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(c) In the following example, compute the cost of realizing f; and f, separately;

then compute the cost using the term a’b’c in common between the two
functions. Use a two-level AND-OR circuit in both cases.

(d) Find expressions which correspond to a two-level, minimum multiple-
output, AND-OR realization of F;, F,, and F;. Why should the term cd not

be included in F;?

ab ab ab
cd 00 01 11 10 cd 00 01 11 10 cd 00 01 11 10
00 1 00 1 00
01 1 01 1 01 1 1
11 1 1 1 1 11 1 1 1 11 1 1 1
10 10 1 1 10
F, F, Fy

F, =

F, =

Fy=

(e) Work Problems 7.9, 7.10, and 7.11.
(f) Work Problem 7.12. (Hint: Work with the 0’s on the maps and first find a

minimum solution for f/, f;, and f5.)
7. Study Section 7.7, Multiple-Output NAND- and NOR-Gate Circuits.

(a) Derive expressions for the F; and F, outputs of the NOR circuits of Figure
7-24(b) by finding the equation for each gate output, and show that these
expressions reduce to the original expressions for F; and F,.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

190 unit7

(b) Convert Figure 7-24(a) to 7-24(b) by using the bubble method.

(¢) Work Problem 7.13.

Multi-Level Gate Circuits
NAND and NOR Gates

In the first part of this unit, you will learn how to design circuits which have more
than two levels of AND and OR gates. In the second part you will learn techniques
for designing with NAND and NOR gates. These techniques generally consist of
first designing a circuit of AND and OR gates and then converting it to the desired
type of gates. These techniques are easy to apply provided that you start with the
proper form of circuit.

7.1 Multi-Level Gate Circuits

The maximum number of gates cascaded in series between a circuit input and the
output is referred to as the number of levels of gates (not to be confused with volt-
age levels). Thus, a function written in sum-of-products form or in product-of-sums
form corresponds directly to a two-level gate circuit. As is usually the case in digital
circuits where the gates are driven from flip-flop outputs (as discussed in Unit 11),
we will assume that all variables and their complements are available as circuit
inputs. For this reason, we will not normally count inverters which are connected

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Multi-Level Gate Circuits NAND and NOR Gates 191

directly to input variables when determining the number of levels in a circuit. In this
unit we will use the following terminology:

1. AND-OR circuit means a two-level circuit composed of a level of AND gates
followed by an OR gate at the output.

2. OR-AND circuit means a two-level circuit composed of a level of OR gates fol-
lowed by an AND gate at the output.

3. OR-AND-OR circuit means a three-level circuit composed of a level of OR
gates followed by a level of AND gates followed by an OR gate at the output.

4. Circuit of AND and OR gates implies no particular ordering of the gates; the
output gate may be either AND or OR.

The number of levels in an AND-OR circuit can usually be increased by factoring
the sum-of-products expression from which it was derived. Similarly, the number of lev-
els in an OR-AND circuit can usually be increased by multiplying out some of the terms
in the product-of-sums expression from which it was derived. Logic designers are con-
cerned with the number of levels in a circuit for several reasons. Sometimes factoring
(or multiplying out) to increase the number of levels of gates will reduce the required
number of gates and gate inputs and, thus, reduce the cost of building the circuit, but in
other cases increasing the number of levels will increase the cost. In many applications,
the number of gates which can be cascaded is limited by gate delays. When the input of
a gate is switched, there is a finite time before the output changes. When several gates
are cascaded, the time between an input change and the corresponding change in the
circuit output may become excessive and slow down the operation of the digital system.

The number of gates, gate inputs, and levels in a circuit can be determined by
inspection of the corresponding expression. In the example of Figure 7-1(a), the tree
diagram drawn below the expression for Z indicates that the corresponding circuit
will have four levels, six gates, and 13 gate inputs, as verified in Figure 7-1(b). Each

FIGURE 7-1 Z=AB+C)(D+E+FG)+H A B F G
Four-Level
Realization of Z Level 4 —>
C DE
Level 3
Level 2
H
Level 1
Z

(a) (b)
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FIGURE 7-2
Three-Level
Realization of Z

node on the tree diagram represents a gate, and the number of gate inputs is writ-
ten beside each node.
We can change the expression for Z to three levels by partially multiplying it out:

Z=AB+C)(D+E)+FG]+H
=AB(D +E)+ CD+E)+ ABFG + CFG+ H
As shown in Figure 7-2, the resulting circuit requires three levels, six gates, and 19 gate

inputs.

— Problem: Find a circuit of AND and OR gates to realize

Example of
Multi-Level fla,b,c,d) = 2m(1,5,6,10,13,14)
Design Using  Consider solutions with two levels of gates and three levels of gates. Try to minimize
AND anGd ?R the number of gates and the total number of gate inputs. Assume that all variables
ates

and their complements are available as inputs.

Solution:  First, simplify f by using a Karnaugh map (Figure 7-3):

FIGURE 7-3 ab
cd . 00 0l 11 10

ol o o o)
acHb
@ e [
J(Wa@m

f=a’c’d+bc’d + bed’ + acd’ (7-1)
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This leads directly to a two-level AND-OR gate circuit (Figure 7-4):

FIGURE 7-4

Factoring Equation (7-1) yields

f=c'd@ +b)+cd(a+b) (7-2)

which leads to the following three-level OR-AND-OR gate circuit (Figure 7-5):

FIGURE 7-5 a’
) O

d — / Three levels
Five gates
¢ — 12 gate Inputs

Both of these solutions have an OR gate at the output. A solution with an AND gate
at the output might have fewer gates or gate inputs. A two-level OR-AND circuit
corresponds to a product-of-sums expression for the function. This can be obtained
from the 0’s on the Karnaugh map as follows:

f'=cd + ab'c" +cd+ a'b'c (7-3)
f=(+d)a +b+c)c +d)a+b+) (7-4)

Equation (7-4) leads directly to a two-level OR-AND circuit (Figure 7-6):

FIGURE 7-6 c

¢ {>—|; i Two levels
. }.f Five gates
¢ D’i 14 gate inputs
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To get a three-level circuit with an AND gate output, we partially multiply out
Equation (7-4) using( X + Y) X + Z) =X+ Y Z:
f=1[c+d@@ + b)][c" +d'(a+ b)] (7-5)
Equation (7-5) would require four levels of gates to realize; however, if we mul-
tiply out d’(a + b) and d(a’ + b), we get
f=(c+ad+bd)c + ad + bd") (7-6)
which leads directly to a three-level AND-OR-AND circuit (Figure 7-7):
FIGURE 7-7

For this particular example, the best two-level solution had an AND gate at the
output (Figure 7-6), and the best three-level solution had an OR gate at the out-
put (Figure 7-5). In general, to be sure of obtaining a minimum solution, one
must find both the circuit with the AND-gate output and the one with the OR-
gate output.

If an expression for f’ has n levels, the complement of that expression is an
n-level expression for f. Therefore, to realize f as an n-level circuit with an
AND-gate output, one procedure is first to find an n-level expression for f’
with an OR operation at the output level and then complement the expression
for f' In the preceding example, factoring Equation (7-3) gives a three-level
expression for f':

f'=c(d +ab") + c(d+ a'b")
= c'(d +a)d +b")+c(d+a)d+Db) (7-7)

Complementing Equation (7-7) gives Equation (7-6), which corresponds to the
three-level AND-OR-AND circuit of Figure 7-7.
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7.2 NAND and NOR Gates

Until this point we have designed logic circuits using AND gates, OR gates, and
inverters. Exclusive-OR and equivalence gates have also been introduced in Unit 3.
In this section we will define NAND and NOR gates. Logic designers frequently use
NAND and NOR gates because they are generally faster and use fewer components
than AND or OR gates. As will be shown later, any logic function can be imple-
mented using only NAND gates or only NOR gates.

Figure 7-8(a) shows a three-input NAND gate. The small circle (or “bubble”)
at the gate output indicates inversion, so the NAND gate is equivalent to an
AND gate followed by an inverter, as shown in Figure 7-8(b). A more appropri-
ate name would be an AND-NOT gate, but we will follow common usage and call
it a NAND gate.

The gate output is

F=(ABC) =A"+B +
The output of the n-input NAND gate in Figure 7-8(c) is
F= (X]Xz...Xn)’ :Xll +X2’ + ... +Xn/ (7_8)

The output of this gate is 1 iff one or more of its inputs are 0.

FIGURE 7-8 X,
NAND Gates A—} 4 X, — } .
B — F B — )—| >So—F :
Cc — C — X, —

(a) Three-input NAND gate (b) NAND gate equivalent (c) n-input NAND gate

Figure 7-9(a) shows a three-input NOR gate. The small circle at the gate output
indicates inversion, so the NOR gate is equivalent to an OR gate followed by an
inverter. A more appropriate name would be an OR-NOT gate, but we will follow
common usage and call it a NOR gate. The gate output is

F=(A+B+C)=ABC

FIGURE 7-9
NOR Gates
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The output of an n-input NOR gate, shown in Figure 7-9(c), is
F=X,+X+...+X) =XX}...X, (7-9)

A set of logic operations is said to be functionally complete if any Boolean
function can be expressed in terms of this set of operations. The set AND, OR, and
NOT is obviously functionally complete because any function can be expressed in
sum-of-products form, and a sum-of-products expression uses only the AND, OR,
and NOT operations. Similarly, a set of logic gates is functionally complete if all
switching functions can be realized using this set of gates. Because the set of oper-
ations AND, OR, and NOT is functionally complete, any set of logic gates which
can realize AND, OR, and NOT is also functionally complete. AND and NOT are
a functionally complete set of gates because OR can also be realized using AND
and NOT:

If a single gate forms a functionally complete set by itself, then any switching
function can be realized using only gates of that type. The NAND gate is an exam-
ple of such a gate. Because the NAND gate performs the AND operation followed
by an inversion, NOT, AND, and OR can be realized using only NAND gates, as
shown in Figure 7-10. Thus, any switching function can be realized using only
NAND gates. An easy method for converting an AND-OR circuit to a NAND cir-
cuit is discussed in the next section. Similarly, any function can be realized using
only NOR gates.

FIGURE 7-10
NAND Gate
Realization of
NOT, AND, and OR

The following procedure can be used to determine if a given set of gates is
functionally complete. First, write out a minimum sum-of-products expression for
the function realized by each gate. If no complement appears in any of these
expressions, then NOT cannot be realized, and the set is not functionally com-
plete. If a complement appears in one of the expressions, then NOT can general-
ly be realized by an appropriate choice of inputs to the corresponding gate. (We
will always assume that 0 and 1 are available as gate inputs). Next, attempt to
realize AND or OR, keeping in mind that NOT is now available. Once AND or
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OR has been realized, the other one can always be realized using DeMorgan’s
laws if no more direct procedure is apparent. For example, if OR and NOT are
available, AND can be realized by

XY =X + 7Y

Design of Two-Level NAND-
and NOR-Gate Circuits

A two-level circuit composed of AND and OR gates is easily converted to a circuit
composed of NAND gates or NOR gates. This conversion is carried out by using
F = (F")" and then applying DeMorgan’s laws:

X +X+.. 0+ X)) =X X;...X, (7-11)
XX,...X,) = X +X; +...+X, (7-12)

The following example illustrates conversion of a minimum sum-of-products form
to several other two-level forms:

F=A+ BC + B'CD = [(A + BC' + B'CD)'] (7-13)
=[A" « (BC')" « (B'CD)| (by 7-11)  (7-14)
=[A"« (B +C)(B+C +D) (by 7-12)  (7-15)
=A+B +C)Y +B+C +D"Y (by 7-12)  (7-16)

Equations (7-13), (7-14), (7-15), and (7-16) represent the AND-OR, NAND-NAND,
OR-NAND, and NOR-OR forms, respectively, as shown in Figure 7-11.
Rewriting Equation (7-16) in the form

F={[A+®B +C) +B+C +D)]) (7-17)

leads to a three-level NOR-NOR-INVERT circuit. However, if we want a two-level
circuit containing only NOR gates, we should start with the minimum product-
of-sums form for F instead of the minimum sum of products. After obtaining the
minimum product of sums from a Karnaugh map, F' can be written in the following
two-level forms:

F=(A+B+C)(A +B +C)A +C +D) (7-18)
={{(A+B+C)(A+B +C)YA+C +D)]Y
=[A+B+C)+(A+B +C) +(A+C +D)]' (by7-12) (7-19)
=(A'B'C' + AABC + A'CD") (by 7-11)  (7-20)
= (A'B'C") « (A'BC)' « (A'CD") (by 7-11) (7-21)
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FIGURE 7-11 F=A+BC’'+B'CD (7-13)

Eight Basic Forms
B —]
'
, A F
B —]
C —
D —]

for Two-Level
Circuits

F=A+B +C)Y+B+C'+D"Y F=[A"-(BCY - (B'CD)Y

(7-10) (7-14)
B’ B —]
C ' —]
A , A — F
B B’ —]
D’ D —

F=[A"-(B"+C)-(B+C'+D)]" (-15

F=(A+B+C)A+B +C)YA+C'+D) (7-18)

Eiel
.

F=[A+B+CY+(A+B +C’)

F=(A'B’C’Y - (A’BC) - (A’CD"Y
+A+C"+D)Y)  (7-19)

(7-21)

A A
B’ — B
C'— C
A’ A
B —_}3— F B’ F
C — c’
A’ A
C — c’
D' — D

F
c
D' —

F=(A'B'C'+A’'BC+A’CD"Y (7-20)
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Equations (7-18),(7-19),(7-20), and (7-21) represent the OR-AND, NOR-NOR,
AND-NOR, and NAND-AND forms, respectively, as shown in Figure 7-11. Two-
level AND-NOR (AND-OR-INVERT) circuits are available in integrated-circuit
form. Some types of NAND gates can also realize AND-NOR circuits when the so-
called wired OR connection is used.

The other eight possible two-level forms (AND-AND, OR-OR, OR-NOR, AND-
NAND, NAND-NOR, NOR-NAND, etc.) are degenerate in the sense that they
cannot realize all switching functions. Consider, for example, the following NAND-
NOR circuit:

From this example, it is clear that the NAND-NOR form can realize only a product
of literals and not a sum of products.

Because NAND and NOR gates are readily available in integrated circuit form,
two of the most commonly used circuit forms are the NAND-NAND and the NOR-
NOR. Assuming that all variables and their complements are available as inputs, the
following method can be used to realize F with NAND gates:

Procedure for designing a minimum two-level NAND-NAND circuit:

1. Find a minimum sum-of-products expression for F.

2. Draw the corresponding two-level AND-OR circuit.

3. Replace all gates with NAND gates leaving the gate interconnections unchanged.
If the output gate has any single literals as inputs, complement these literals.

Figure 7-12 illustrates the transformation of step 3. Verification that this transfor-
mation leaves the circuit output unchanged follows. In general, F'is a sum of literals
(€1, €5, . . .) and product terms (Py, Ps, . . .):

F=€+€+ - +P +Py+---
After applying DeMorgan’s law,
F=(¢/ 6 PP}

FIGURE 7-12

X — PI’ ,
AND-OR to 2/ € —
NAND-NAND : N F
Transformation 2] ) P; :
(a) Before transformation (b) After transformation
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So the output OR gate is replaced with a NAND gate with inputs €1, €5, ..., P}, P, . ..
Because product terms P, P,, . .. are each realized with an AND gate, P}, P>, ... are
each realized with a NAND gate in the transformed circuit.

Assuming that all variables and their complements are available as inputs, the
following method can be used to realize F with NOR gates:

Procedure for designing a minimum two-level NOR-NOR circuit:

1. Find a minimum product-of-sums expression for F.

2. Draw the corresponding two-level OR-AND circuit.

3. Replace all gates with NOR gates leaving the gate interconnections unchanged.
If the output gate has any single literals as inputs, complement these literals.

This procedure is similar to that used for designing NAND-NAND circuits. Note,
however, that for the NOR-NOR circuit, the starting point is a minimum product of
sums rather than a sum of products.

7.4 Design of Multi-Level NAND-
and NOR-Gate Circuits

The following procedure may be used to design multi-level NAND-gate circuits:

1. Simplify the switching function to be realized.

2. Design a multi-level circuit of AND and OR gates. The output gate must be OR.
AND gate outputs cannot be used as AND-gate inputs; OR-gate outputs can-
not be used as OR-gate inputs.

3. Number the levels starting with the output gate as level 1. Replace all gates
with NAND gates, leaving all interconnections between gates unchanged.
Leave the inputs to levels 2, 4, 6, ... unchanged. Invert any literals which
appear as inputs to levels 1, 3,5, .. ..

The validity of this procedure is easily proven by dividing the multi-level circuit
into two-level subcircuits and applying the previous results for two-level circuits
to each of the two-level subcircuits. The example of Figure 7-13 illustrates the pro-
cedure. Note that if step 2 is performed correctly, each level of the circuit will con-
tain only AND gates or only OR gates.

The procedure for the design of multi-level NOR-gate circuits is exactly
the same as for NAND-gate circuits except the output gate of the circuit of
AND and OR gates must be an AND gate, and all gates are replaced with
NOR gates.

— = q'[b' + c(d + ')+ f'g'] + hi'j + k
Example Figure 7-13 shows how the AND-OR circuit for F, is converted to the correspon-
ding NAND circuit.
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. FIGURE_ 7'1_3 Level 5 Level 4 Level 3 Level 2 Level 1
Multi-Level Circuit

Conversion to
NAND Gates
k Fy

(a) AND-OR network

Level 5 Level 4 Level 3 Level 2 Level 1

d’—

a’ —
o —
i h —
),_ [..’_
8 j—

(b) NAND network

Tt

7.5 Circuit Conversion Using Alternative
Gate Symbols

Logic designers who design complex digital systems often find it convenient to use
more than one representation for a given type of gate. For example, an inverter can

be represented by

In the second case, the inversion “bubble” is at the input instead of the output.
Figure 7-14 shows some alternative representations for AND, OR, NAND, and
NOR gates. These equivalent gate symbols are based on DeMorgan’s Laws.

FIGURE 7-14
Alternative Gate
Symbols

These alternative symbols can be used to facilitate the analysis and design of NAND
and NOR gate circuits. Figure 7-15(a) shows a simple NAND-gate circuit. To analyze
the circuit, we will replace the NAND gates at the first and third levels with the alterna-
tive NAND gate symbol. This eliminates the inversion bubble at the circuit output.
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FIGURE 7-15 A—]
NAND Gate Circuit B — ! 2
Conversion S F —D:»—z

Z=(A"+B)C+F ' +DE

(c) Equivalent AND-OR network

In the resulting circuit [Figure 7-15(b)], inverted outputs (those with a bubble) are
always connected to inverted inputs, and noninverted outputs are connected to nonin-
verted inputs. Because two inversions in a row cancel each other out, we can easily ana-
lyze the circuit without algebraically applying DeMorgan’s laws. Note, for example, that
the output of gate 2 is [(A’ + B)C ], but the term (A’ + B)C appears in the output
function. We can also convert the circuit to an AND-OR circuit by simply removing the
double inversions [see Figure 7-15(c)]. When a single input variable is connected to an
inverted input, we must also complement that variable when we remove the inversion
from the gate input. For example, A in Figure 7-15(b) becomes A’ in Figure 7-15(c).

The circuit of AND and OR gates shown in Figure 7-16(a) can easily be convert-
ed to a NOR-gate circuit because the output gate is an AND gate, and AND and OR
gates alternate throughout the circuit. That is, AND gate outputs connect only to OR
gate inputs, and OR gate outputs connect only to AND gate inputs. To carry out con-
version to NOR gates, we first replace all of the OR and AND gates with NOR gates,
as shown in Figure 7-16(b). Because each inverted gate output drives an inverted
gate input, the pairs of inversions cancel. However, when an input variable drives an
inverted input, we have added a single inversion, so we must complement the vari-
able to compensate. Therefore, we have complemented C and G.The resulting NOR-
gate circuit is equivalent to the original AND-OR circuit.

Even if AND and OR gates do not alternate, we can still convert an AND-OR
circuit to a NAND or NOR circuit, but it may be necessary to add extra inverters so
that each added inversion is cancelled by another inversion. The following proce-
dure may be used to convert to a NAND (or NOR) circuit:

1. Convert all AND gates to NAND gates by adding an inversion bubble at the out-
put. Convert all OR gates to NAND gates by adding inversion bubbles at the
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Conversion to NOR
Gates

FIGURE 7-17
Conversion of
AND-OR Circuit
to NAND Gates
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A
B’ G
c— , z
D
E
F

(a) Circuit with OR and AND gates

Double inversion cancels

'—9
e = ED S
Complemented input

cancels inversion ~

F

(b) Equivalent circuit with NOR gates

inputs. (To convert to NOR, add inversion bubbles at all OR gate outputs and all
AND gate inputs.)

Whenever an inverted output drives an inverted input, no further action is needed
because the two inversions cancel.

Whenever a noninverted gate output drives an inverted gate input or vice versa,
insert an inverter so that the bubbles will cancel. (Choose an inverter with the
bubble at the input or output as required.)
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4. Whenever a variable drives an inverted input, complement the variable (or add
an inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function
realized by the circuit will be unchanged. To illustrate the procedure we will con-
vert Figure 7-17(a) to NANDs. First, we add bubbles to change all gates to
NAND gates (Figure 7-17(b)). In four places (highlighted in blue), we have
added only a single inversion. This is corrected in Figure 7-17(c) by adding two
inverters and complementing two variables.

7.6 Design of Two-Level, Multiple-Output
Circuits

Solution of digital design problems often requires the realization of several func-
tions of the same variables. Although each function could be realized separately, the
use of some gates in common between two or more functions sometimes leads to a
more economical realization. The following example illustrates this:

Design a circuit with four inputs and three outputs which realizes the functions

F\(A, B, C, D) = 3 m(11, 12,13, 14, 15)
Fy(A, B, C,D) = S m(3,7,11,12,13, 15)
F;y(A,B,C,D) = 3 m(3,7,12,13, 14, 15) (7-22)

First, each function will be realized individually. The Karnaugh maps, functions,
and resulting circuit are given in Figures 7-18 and 7-19. The cost of this circuit is 9
gates and 21 gate inputs.

An obvious way to simplify this circuit is to use the same gate for AB in both F;
and F;. This reduces the cost to eight gates and 19 gate inputs. (Another, but less
obvious, way to simplify the circuit is possible.) Observing that the term ACD is

FIGURE 7-18 AB AB AB
Karnaugh c¢p 00 01 11 10 cD 00 01 11 10 cD 00 01 11 10

Maps for N ~
Equations (7-22) 1 00 m 00 1

01 1 01 LIJ 01 1
11 (1 1) 11 (l 1 1 1) 11 E:l) 1

£y F F3
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Realization of
Equations (7-22)

FIGURE 7-20
Multiple-Output
Realization of
Equations (7-22)
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A—

C— : :
D—] Fy=AB+ACD
A—]

B pu—

A—

2 F,=ABC’+CD
c—]

D—

Ar—]

C— . ’

b—] Fy=A’CD +AB
A—]

B pu—

necessary for the realization of F) and A’ CD is necessary for Fj3, if we replace CD
in F, by A'CD + ACD, the realization of CD is unnecessary and one gate is saved.
Figure 7-20 shows the reduced circuit, which requires seven gates and 18 gate
inputs. Note that F, is realized by the expression ABC' + A'CD + ACD which is
not a minimum sum of products, and two of the terms are not prime implicants of
F, . Thus in realizing multiple-output circuits, the use of a minimum sum of prime
implicants for each function does not necessarily lead to a minimum cost solution
for the circuit as a whole.

When designing multiple-output circuits, you should try to minimize the total
number of gates required. If several solutions require the same number of gates,
the one with the minimum number of gate inputs should be chosen. The next
example further illustrates the use of common terms to save gates. A four-input,
three-output circuit is to be designed to realize

fi=2m(2,3,5,7,8,9,10,11, 13, 15)
L =2m(2,3,5,6,7,10,11, 14, 15)
fi=32m(6,7,8,9,13,14,15) (7-23)
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FIGURE 7-2

First, we plot maps for fi, f>, and f; (Figure 7-21). If each function is minimized sep-
arately, the result is

fi= bd + b'c+ ab’

fr= c+abd
abd 10 gates,
fs=bc+ab'c + { or } 25 gate inputs

ac'd (7-23(a))

By inspecting the maps, we can see that terms a’bd (from f,), abd (from f;),and ab’c’
(from f3) can be used in fi. If bd is replaced with a’'bd + abd, then the gate needed
to realize bd can be eliminated. Because m;, and my; in f; are already covered by b'c,
ab’c’ (from f3) can be used to cover mg and my, and the gate needed to realize ab’
can be eliminated. The minimal solution is therefore

f,=a'bd + abd + ab'c’ + b'c

fr=c+abd eight gates (7-23(b))
fs =bc + ab'c’ + abd 22 gate inputs

(Terms which are used in common between two functions are underlined.)

When designing multiple-output circuits, it is sometimes best not to combine a 1
with its adjacent 1’s, as illustrated in the example of Figure 7-22.

The solution with the maximum number of common terms is not necessarily
best, as illustrated in the example of Figure 7-23.

Determination of Essential Prime Implicants

for Multiple-Output Realization

As a first step in determining a minimum two-level, multiple-output realization, it is
often desirable to determine essential prime implicants. However, we must be care-
ful because some of the prime implicants essential to an individual function may not
be essential to the multiple-output realization. For example, in Figure 7-21, bd is an
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FIGURE 7-22 ab ab ab ab
cd\_00 01 11 10 g\ 00 01 11,10 ¢\ 00 Ol 11 10 ¢\ 00 01 11 10

00 00 t _) 00 00 t _1)
onfa [ 1|1 D] o

N CEENEN R

11 1 11

1
- ®
10 10 (1__1] 10 10 (1 )

h 5 fi 5

(a) Best solution (b) Solution requires an extra gate

FIGURE 7-23 b / \

a / \ ab ab
cd ()()‘/ 01 11 10 cd\ 00V 01 11 10 cd\_, 00 01 11 10 cd\_ 00 01 11 10

00 | ] M oo (@] (@D oo [l (1) 0o |1 ]
o| ) o [ or| |l o )

11 11 11 11

10 Ez) 10 E:Q 10 (1 CQ_D 10 (1__1\

7 T T T T

Ademmm e " f h h
(a) Solution with maximum number of (b) Best solution requires 7 gates, 18 inputs
common terms requires 8 gates, 26 inputs and has no common terms

essential prime implicant of f; (only prime implicant which covers ms), but it is not
essential to the multiple-output realization. The reason that bd is not essential is that
ms also appears on the f, map and, hence, might be covered by a term which is
shared by f; and f.

We can find prime implicants which are essential to one of the functions and to
the multiple-output realization by a modification of the procedure used for the
single-output case. In particular, when we check each 1 on the map to see if it is cov-
ered by only one prime implicant, we will only check those 1’s which do not appear
on the other function maps. Thus, in Figure 7-22 we find that c¢'d is essential to f; for
the multiple-output realization (because of m;,), but abd is not essential because ;5
also appears on the f, map. In Figure 7-23, the only minterms of f; which do not
appear on the f, map are m, and ms. The only prime implicant which covers m, is
a'd';hence, a’'d’ is essential to f in the multiple-output realization. Similarly, the only
prime implicant which covers mjs is a’bc’, and a’bc’ is essential. On the f, map, bd' is
essential. Why?

Once the essential prime implicants for f; and f; have been looped, selection of the
remaining terms to form the minimum solution is obvious in this example. The tech-
niques for finding essential prime implicants outlined above cannot be applied in a
problem such as Figure 7-21 where every minterm of f; also appears on the f, or f;
map. More sophisticated techniques are available for finding essential multiple-
output terms for such problems, but these techniques are beyond the scope of this text.
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7.7 Multiple-Output NAND- and NOR-Gate
Circuits

The procedure given in Section 7.4 for design of single-output, multi-level NAND-
and NOR-gate circuits also applies to multiple-output circuits. If all of the output
gates are OR gates, direct conversion to a NAND-gate circuit is possible. If all of the
output gates are AND, direct conversion to a NOR-gate circuit is possible. Figure 7-24
gives an example of converting a 2-output circuit to NOR gates. Note that the inputs
to the first and third levels of NOR gates are inverted.

Fi=[@+d)etd]e +f) F,=[(a+b)c+gle +f)h

FIGURE 7-24 Level 4 Level 3 Level 2 Level 1

Multi-level Circuit B d
Conversion to NOR D— Dﬁ
b F
Gates ]

(b) NOR network

Problems

7.1 Using AND and OR gates, find a minimum circuit to realize
fla,b,c,d) = my + mg + m; + mg + my + my,
(a) using two-level logic
(b) using three-level logic (12 gate inputs minimum)
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7.2 Realize the following functions using AND and OR gates. Assume that there are no
restrictions on the number of gates which can be cascaded and minimize the num-
ber of gate inputs.

(a) AC'D + ADE' + BE' + BC' + A'D'FE’
(b) AE + BDE + BCE + BCFG + BDFG + AFG

7.3 Find eight different simplified two-level gate circuits to realize
F(a,b,c,d) = a’'bd + ac’'d

7.4 Find a minimum three-level NAND gate circuit to realize
F(A,B,C,D) =X m(5,10,11,12,13) (four gates)

7.5 Realize Z = A'D + A'C + AB'C'D’ using four NOR gates.

7.6 Realize Z = ABC + AD + C'D’ using only two-input NAND gates. Use as few
gates as possible.

7.7 Realize Z = AE + BDE + BCEF using only two-input NOR gates. Use as few gates
as possible.

7.8 (a) Convert the following circuit to all NAND gates, by adding bubbles and invert-
ers where necessary.
(b) Convert to all NOR gates (an inverter at the output is allowed).

A
B

c E— Z
D’ F

7.9 Find a two-level, multiple-output AND-OR gate circuit to realize the following
functions. Minimize the required number of gates (six gates minimum).

fi = ac +ad + b'd and = ab +ad +cd

7.10 Find a minimum two-level, multiple-output AND-OR gate circuit to realize these
functions.

fi(a,b,c,d) = Zm(3,4,6,9,11)
fila, b, c,d) =S m(2,4,8,10,11, 12)
fs(a, b, c,d) = 2m(3,6,7,10,11) (11 gates minimum)

7.11 Find a minimum two-level OR-AND circuit to simultaneously realize
Fi(a,b,c,d) = 2 m(2,3,8,9,14,15)
Fy(a,b,c,d) =2m(0,1,5,8,9, 14, 15)

(minimum solution has eight gates)
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7.12 Find a minimum two-level OR-AND circuit to realize the functions given in
Equations (7-23) on page 205 (nine gates minimum)

7.13 (a) Find a minimum two-level NAND-NAND circuit to realize the functions given
in Equations (7-23) on page 205.
(b) Find a minimum two-level NOR-NOR circuit to realize the functions given in
Equations (7-23).

7.14 Using AND and OR gates, find a minimum circuit to realize
fla,b,c,d) = MyM; M; M3 M, M5

(a) using two-level logic
(b) using three-level logic (12 gate inputs minimum)

7.15 Using AND and OR gates, find a minimum two-level circuit to realize
(a) F=ad'c + bc'd+ ac'd
) F=MB"+c)a+b +d)(a+b+c +d
(c) F=da'cd + a'bc + ad
(d) F=a'b + ac + bc + bd’

7.16 Realize the following functions using AND and OR gates. Assume that there are no
restrictions on the number of gates which can be cascaded and minimize the num-
ber of gate inputs.

(a) ABC' + ACD + A'BC + A'C'D
(b) ABCE + ABEF + ACD' + ABEG + ACDE

7.17 A combinational switching circuit has four inputs (A, B, C, D) and one output (F).
F = 0 iff three or four of the inputs are 0.
(a) Write the maxterm expansion for F.
(b) Using AND and OR gates, find a minimum three-level circuit to realize F (five
gates, 12 inputs).

7.18 Find eight different simplified two-level gate circuits to realize
(a) Fw,x,y,2) = (x +y' + 2)(x" +y + 2)w
(b) F(a,b,c,d) = X m(4,5,8,9,13)

7.19 Implement f(x, y, z) = % m(0, 1, 3, 4, 7) as a two-level gate circuit, using a minimum
number of gates.
(a) Use AND gates and NAND gates.
(b) Use NAND gates only.

7.20 Implement f(a, b, c,d) = % m(3,4,5,6,7,11,15) as a two-level gate circuit, using a
minimum number of gates.
(a) Use OR gates and NOR gates.
(b) Use NOR gates only.
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7.21 Realize each of the following functions as a minimum two-level NAND-gate circuit

and as a minimum two-level NOR-gate circuit.

(a) F(A,B,C,D)=BD' + B'CD + A’'BC+ A'BC'D + B'D'

(b) fla, b, c,d) =11M(0,1,7,9,10,13) « [1 D(2, 6, 14, 15)

(¢) fla,b,c,d)=2%m(0,2,5,10) + = d(3,6,9,13,14,15)

(d) F(A,B,C,D, E) = % m(0,2,4,5,11,14,16,17,18, 22,23, 25,26, 31)
+2,d(3,19,20,27,28)

(e) F(A,B,C,D,E) =11 M(3,4,8,9,10,11,12,13, 14, 16, 19, 22, 25, 27)

« 11 D(16,18,28,29)
®) fla,b,c,d)=11M(1,3,10,11,13,14,15) « [1 D(4,6)
(g) fiw,x,y,z) =2m(1,2,4,6,8,9,11,12,13) + 3 d(0, 7, 10, 15)

7.22 A combinational switching circuit has four inputs and one output as shown. F' = 0 iff
three or four of the inputs are 1.
(a) Write the maxterm expansion for F.
(b) Using AND and OR gates, find a minimum three-level circuit to realize F (5 gates,
12 inputs).

A —>
B —>
C —>

D —>

7.23 Implement f(a, b, c,d) = 2 m(3,4,5,6,7, 11, 15) as a two-level gate circuit, using a
minimum number of gates.
(a) Use AND gates and NAND gates.
(b) Use OR gates and NAND gates.
(c) Use NAND gates only.

7.24 (a) Use gate equivalences to convert the circuit into a four-level circuit containing only
NAND gates and a minimum number of inverters. (Assume the inputs are avail-
able only in uncomplemented form.)

(b) Derive a minimum SOP expression for f.
(c) By manipulating the expression for f, find a three-level circuit containing only
five NAND gates and inverters.

A%j»{

1
Y é
[9
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7.25 (a) Use gate equivalences to convert the circuit of Problem 7.24 into a five-level cir-
cuit containing only NOR gates and a minimum number of inverters. (Assume
the inputs are available only in uncomplemented form.)

(b) Derive a minimum POS expression for f.
(c) By manipulating the expression for f, find a four-level circuit containing only six
NOR gates and inverters.

7.26 In the circuit, replace each NOR gate by an AND or OR gate so that the resulting
circuit contains the fewest inverters possible. Assume the inputs are available in
both true and complemented form. Do not replace the exclusive-OR gates.

7.27 (a) Convert the circuit shown into a four-level circuit only containing AND and OR
gates and a minimum number of inverters.
(b) Derive a sum-of-products expression for f.
(c) Find a circuit that realizes f’ containing only NOR gates (no internal inverters).
(Hint: Use gate conversions to convert the NAND gates in the given circuit to
NOR gates.)

> =il
D,
ji}J By

7.28 f(a,b,c.d,e) = S m(2,3,6,12,13, 16, 17, 18, 19,22, 24,25, 27, 28, 29, 31)

(a) Find a minimum two-level NOR-gate circuit to realize f.
(b) Find a minimum three-level NOR-gate circuit to realize f.

SO

7.29 Design a minimum three-level NOR-gate circuit to realize

f=a'b" + abd + acd
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7.30 Find a minimum four-level NAND- or NOR-gate circuit to realize
(a) Z =abe'f+ c'e'f +de'f+ gh
by Z=(@ +b+e+f)c +a +b)d +a +Db)g+h)

7.31 Implement abde’ + a'b’ + c using four NOR gates.
7.32 Implement x'yz + xvy'w’ + xvy'z’ using a three-level NAND-gate circuit.

7.33 Design a logic circuit that has a 4-bit binary number as an input and one output. The
output should be 1 iff the input is a prime number (greater than 1) or zero.
(a) Use a two-level NAND-gate circuit.
(b) Use a two-level NOR-gate circuit.
(c) Use only two-input NAND gates.

7.34 Work Problem 7.33 for a circuit that has an output 1 iff the input is evenly divisible
by 3 (0 is divisible by 3).

7.35 Realize the following functions, using only two-input NAND gates. Repeat using
only two-input NOR gates.
(a) F = A'BC' + BD + AC + B'CD’
(b) F = A'CD + AB'C'D + ABD' + BC

7.36 (a) Find a minimum circuit of two-input AND and two-input OR gates to realize
F(A,B,C,D) =3%m(0,1,2,3,4,5,7,9,11, 13, 14, 15)
(b) Convert your circuit to two-input NAND gates. Add inverters where necessary.
(c) Repeat (b), except convert to two-input NOR gates.

7.37 Realize Z = A[BC' + D + E(F' + GH)] using NOR gates. Add inverters if necessary.

7.38 In which of the following two-level circuit forms can an arbitrary switching function
be realized? Verify your answers. (Assume the inputs are available in both comple-
mented and uncomplemented form.)

(a) NOR-AND
(b) NOR-OR

(c) NOR-NAND
(d) NOR-XOR
(e) NAND-AND
(f) NAND-OR
(g) NAND-NOR
(h) NAND-XOR

7.39 Find a minimum two-level, multiple-output AND-OR gate circuit to realize these
functions (eight gates minimum).
fi(a,b,c,d) =2 m(10,11,12,15) + X d(4,8,14)
fr(a,b,c,d) =%2m(0,4,8,9) +2d(1,10,12)
fz(a,b,c,d) =X m(4,11,13,14,15) + % d(5,9,12)
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7.44

7.45

7.46
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Repeat 7.39 for the following functions (six gates).

fila,b,c,d) =%2m(2,3,5,6,7,8,10)
fr(a,b,c,d) =2m(0,1,2,3,5,7,8,10)

Repeat 7.39 for the following functions (eight gates).

fitx,y.z) =2m(2,3,4,5)
£ (x,y,2) =2m(1,3,5,6)
f(x,y,2) =2m(1,2,4,5,6)

(a) Find a minimum two-level, multiple-output OR-AND circuit to realize
fi=b'd+ab +c'dand f,=a'd + bc’" + bd'.
(b) Realize the same functions with a minimum two-level NAND-NAND circuit.

Repeat Problem 7.42 for f; = ac’ + b'd + ¢'d and f, = b'c + a'd + cd'.

(a) Find a minimum two-level, multiple-output NAND-NAND circuit to realize
fi=2m(3,6,7,11,13,14,15) and f, = % m(3,4,6,11,12,13, 14).
(b) Repeat for a minimum two-level, NOR-NOR circuit.

(a) Find a minimum two-level, multiple-output NAND-NAND circuit to realize
fi=2m(0,2,4,6,7,10,14) and f, = 2 m(0, 1,4,5,7, 10, 14).
(b) Repeat for a minimum two-level, multiple-output NOR-NOR circuit.

Draw a multi-level, multiple-output, circuit equivalent to Figure 7-24(a) using:

(a) NAND and AND gates.
(b) NAND gates only (a direct conversion is not possible).
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Combinational Circuit Design
and Simulation Using Gates

Objectives

Draw a timing diagram for a combinational circuit with gate delays.

2. Define static 0- and 1-hazards and dynamic hazards. Given a combina-
tional circuit, find all of the static 0- and 1-hazards. For each hazard,
specify the order in which the gate outputs must switch in order for the
hazard to actually produce a false output.

3. Given a switching function, realize it using a two-level circuit which is free
of static and dynamic hazards (for single input variable changes).

4. Design a multiple-output NAND or NOR circuit using gates with limited
fan-in.

5. Explain the operation of a logic simulator that uses four-valued logic.

6. Test and debug a logic circuit design using a simulator.

215
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Study Guide

1. Obtain your design problem assignment from your instructor.
2. Study Section 8.1, Review of Combinational Circuit Design.

3. Generally, it is possible to redesign a circuit which has two AND gates cascaded or
two OR gates cascaded so that AND and OR gates alternate. If this is not practi-
cal, the conversion to a NAND or NOR circuit by the techniques of Section 7.4 is
still possible by introducing a dummy one-input OR (AND) gate between the two
AND (OR) gates. When the conversion is carried out, the dummy gate becomes an
inverter. Try this technique and convert the following circuit to all NAND gates.
Alternatively, you may use the procedures given in Section 7.5 to do the conversion.

a

b’ c

d’—
=
g —

4. Study Section 8.2, Design of Circuits with Limited Gate Fan-In.

(a) If a realization of a switching expression requires too many inputs on one
or more gates, what should be done?

(b) Assuming that all variables and their complements are available as inputs
and that both AND and OR gates are available, does realizing the com-
plement of an expression take the same number of gates and gate inputs
as realizing the original expression?

(c) When designing multiple-output circuits with limited gate fan-in, why is
the procedure of Section 7.6 of little help?

5. (a) Study Section 8.3, Gate Delays and Timing Diagrams. Complete the timing dia-
gram for the given circuit. Assume that the AND gate has a 30-nanosecond
(ns) propagation delay and the inverter has a 20-ns delay.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Combinational Circuit Design and Simulation Using Gates 217

(b) Work Problem 8.1.
6. Study Section 8.4, Hazards in Combinational Logic.

(a) Even though all of the gates in a circuit are of the same type, each individual
gate may have a different propagation delay. For example, for one type of TTL
NAND gate the manufacturer specifies a minimum propagation delay of 5 ns
and a maximum delay of 30 ns. Sketch the gate outputs for the following cir-
cuit when the x input changes from 1 to 0, assuming the following gate delays:

(a) gate 1-5ns (b) gate 2-20 ns (c) gate 3-10 ns.

(b) Define static 0-hazard, static 1-hazard, and dynamic hazard.

(c) Using a Karnaugh map, explain why ¥ = a’b + ac has a 1-hazard for the
input change abc = 011 to 111, but not for 011 to 010. Then explain it with-
out using the map.

(d) Explain why F = (a’ + b")(b + ¢) has a 0-hazard for the input change
abc = 100 to 110, but not for 100 to 000.

(e) Under what condition does a sum-of-products expression represent a
hazard-free, two-level AND-OR circuit?

(f) Under what condition does a product-of-sums expression represent a
hazard-free, two-level OR-AND circuit?

(g) If a hazard-free circuit of AND and OR gates is transformed to NAND or
NOR gates using the procedure given in Unit 7, why will the results be
hazard-free?

(h) Work Problems 8.2 and 8.3.
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7. Study Section 8.5, Simulation and Testing of Logic Circuits.

(a) Verify that Table 8-1 is correct. Consider both the case where the unknown
value, X, is 0 and the case where it is 1.
(b) The following circuit was designed to realize the function

F=[A"+ B+ CD][A+B +(C +D')C + D)]

When a student builds the circuit in lab, he finds that when A = C =0 and B =
D = 1, the output F has the wrong value and that the gate outputs are as shown.
Determine some possible causes of the incorrect output if G = 0 and if G = 1.

(c) Work Problems 8.4 and 8.5.

8. Study your assigned design problem and prepare a design which meets specifi-
cations. Note that only two-, three-, and four-input NAND gates (or NOR gates
as specified) and inverters are available for this project; therefore, factoring
some of the equations will be necessary. Try to make an economical design by
using common terms; however, do not waste time trying to get an absolute min-
imum solution. When counting gates, count both NAND (or NOR) gates and
inverters, but do not count the inverters needed for the input variables.

9. Check your design carefully before simulating it. Test it on paper by applying
some input combinations of 0’s and 1’s and tracing the signals through to make
sure that the outputs are correct. If you have a CAD program such as LogicAid
available, enter the truth table for your design into the computer, derive the
minimum two-level equations, and compare them with your solution.

10. In designing multi-level, multiple-output circuits of the type used in the design
problems in this unit, it is very difficult and time-consuming to find a minimum
solution. You are not expected to find the best possible solution to these prob-
lems. All of these solutions involve some “tricks,” and it is unlikely that you
could find them without trying a large number of different ways of factoring
your equations. Therefore, if you already have an acceptable solution, do not
waste time trying to find the minimum solution. Because integrated circuit gates
are quite inexpensive, it is not good engineering practice to spend a large
amount of time finding the absolute minimum solution unless a very large num-
ber of units of the same type are to be manufactured.

11. Obtain a Unit 8 supplement from your instructor and follow the instructions
therein regarding simulating and testing your design.
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/ Combinational Circuit Design
_ and Simulation Using Gates

8.1 Review of Combinational Circuit Design

The first step in the design of a combinational switching circuit is usually to set up a
truth table which specifies the output(s) as a function of the input variables. For n input
variables this table will have 2" rows. If a given combination of values for the input
variables can never occur at the circuit inputs, the corresponding output values are
don’t-cares. The next step is to derive simplified algebraic expressions for the output
functions using Karnaugh maps, the Quine-McCluskey method, or a similar procedure.
In some cases, particularly if the number of variables is large and the number of terms
is small, it may be desirable to go directly from the problem statement to algebraic
equations, without writing down a truth table. The resulting equations can then be sim-
plified algebraically. The simplified algebraic expressions are then manipulated into the
proper form, depending on the type of gates to be used in realizing the circuit.

The number of levels in a gate circuit is equal to the maximum number of gates
through which a signal must pass when going between the input and output terminals.
The minimum sum of products (or product of sums) leads directly to a minimum two-
level gate circuit. However, in some applications it is desirable to increase the number
of levels by factoring (or multiplying out) because this may lead to a reduction in the
number of gates or gate inputs.

When a circuit has two or more outputs, common terms in the output functions can
often be used to reduce the total number of gates or gate inputs. If each function is min-
imized separately, this does not always lead to a minimum multiple-output circuit. For
a two-level circuit, Karnaugh maps of the output functions can be used to find the com-
mon terms. All of the terms in the minimum multiple-output circuit will not necessari-
ly be prime implicants of the individual functions. When designing circuits with three
or more levels, looking for common terms on the Karnaugh maps may be of little value.
In this case, the designer will often minimize the functions separately and, then, use
ingenuity to factor the expressions in such a way to create common terms.

Minimum two-level AND-OR, NAND-NAND, OR-NAND, and NOR-OR cir-
cuits can be realized using the minimum sum of products as a starting point. Minimum
two-level OR-AND, NOR-NOR, AND-NOR, and NAND-AND circuits can be real-
ized using the minimum product of sums as a starting point. Design of multi-level,

219
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multiple-output NAND-gate circuits is most easily accomplished by first designing a
circuit of AND and OR gates. Usually, the best starting point is the minimum sum-
of-products expressions for the output functions. These expressions are then factored
in various ways until an economical circuit of the desired form can be found. If this
circuit has an OR gate at each output and is arranged so that an AND gate (or OR
gate) output is never connected to the same type of gate, a direct conversion to a
NAND-gate circuit is possible. Conversion is accomplished by replacing all of the
AND and OR gates with NAND gates and then inverting any literals which appear
as inputs to the first, third, fifth, . . . levels (output gates are the first level).

If the AND-OR circuit has an AND gate (or OR gate) output connected to the
same type of gate, then extra inverters must be added in the conversion process (see
Section 7.5, Circuit Conversion Using Alternative Gate Symbols.)

Similarly, design of multi-level, multiple-output NOR-gate circuits is most easily
accomplished by first designing a circuit of AND and OR gates. In this case the best
starting point is usually the minimum sum-of-products expressions for the comple-
ments of the output functions. Affer factoring these expressions to the desired form,
they are then complemented to get expressions for the output functions, and the
corresponding circuit of AND and OR gates is drawn. If this circuit has an AND
gate at each output, and an AND gate (or OR gate) output is never connected to
the same type of gate, a direct conversion to a NOR-gate circuit is possible.
Otherwise, extra inverters must be added in the conversion process.

8.2 Design of Circuits with Limited Gate Fan-In

In practical logic design problems, the maximum number of inputs on each gate (or
the fan-in) is limited. Depending on the type of gates used, this limit may be two,
three, four, eight, or some other number. If a two-level realization of a circuit
requires more gate inputs than allowed, factoring the logic expression to obtain a
multi-level realization is necessary.

— Realize f(a, b, ¢, d) = % m(0,3,4,5,8,9,10, 14, 15) using three-input NOR gates.
Example
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As can be seen from the preceding expression, a two-level realization requires two
four-input gates and one five-input gate. The expression for f’ is factored to reduce
the maximum number of gate inputs to three and, then, it is complemented:

f'=>b'd(a'c + ac)+a'c(b+d') + abc’
f=b+d +@+c)a +c)]la+c +bd]la +b +c]
The resulting NOR-gate circuit is shown in Figure 8-1.
FIGURE 8-1

The techniques for designing two-level, multiple-output circuits given in
Section 7.6 are not very effective for designing multiple-output circuits with more
than two levels. Even if the two-level expressions had common terms, most of these
common terms would be lost when the expressions were factored. Therefore, when
designing multiple-output circuits with more than two levels, it is usually best to
minimize each function separately. The resulting two-level expressions must then
be factored to increase the number of levels. This factoring should be done in such
a way as to introduce common terms wherever possible.

— Realize the functions given in Figure 8-2, using only two-input NAND gates and

Example  jpyerters. If we minimize each function separately, the result is
fi=b'c" +ab'" +a'b
fr=b'c’ +bc+ab
fs=a'b'c+ ab + bc’
FIGURE 8-2 a a a
e\, 0 1 b\, 01 AN 1
00|(1 ol(1 | 1 00
gD D) | |
01 01 01 @
1 m 11 [ 1) 1) 1 q
10 w 10 b (1 L1 |
fi==m(0,2,3,4,5) f=Sm(0,2,3,4,7) f=2m(1,2,6,7)
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Each function requires a three-input OR gate, so we will factor to reduce the num-
ber of gate inputs:

fi=b'latc)+adb
fr=bla +c)+b'c or f,b=0b"+tc)b+c)+ab
fz=a'b'c+ bla+c)

The second expression for f, has a term common to f;, so we will choose the second
expression. We can eliminate the remaining three-input gate from f; by noting that
a'b'c=a'(b'c)=a(b+c")

Figure 8-3(a) shows the resulting circuit, using common terms a'b and a + ¢'.

Because each output gate is an OR, the conversion to NAND gates, as shown in
Figure 8-3(b), is strainghtforward.

FIGURE 8-3 Realization of Figure 8-2

- O
a a’ —]
DT DD
a’ —] a’—]
b b b b _3{
1> ool BDaDs
c ¢’
D b'c b’ ) b'c
c’ ¢ —
a’ — f3 “'_} b 5
= sl

8.3 Gate Delays and Timing Diagrams

When the input to a logic gate is changed, the output will not change instantaneously.
The transistors or other switching elements within the gate take a finite time to react
to a change in input, so that the change in the gate output is delayed with respect to
the input change. Figure 8-4 shows possible input and output waveforms for an invert-
er. If the change in output is delayed by time, €, with respect to the input, we say that
this gate has a propagation delay of €. In practice, the propagation delay for a 0 to 1
output change may be different than the delay for a 1 to 0 change. Propagation delays
for integrated circuit gates may be as short as a few nanoseconds (1 nanosecond =
1077 second), and in many cases these delays can be neglected. However, in the analy-
sis of some types of sequential circuits, even short delays may be important.

Timing diagrams are frequently used in the analysis of sequential circuits. These
diagrams show various signals in the circuit as a function of time. Several variables
are usually plotted with the same time scale so that the times at which these variables
change with respect to each other can easily be observed.
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FIGURE 8-4
Propagation Delay
in an Inverter

Figure 8-5 shows the timing diagram for a circuit with two gates. We will assume
that each gate has a propagation delay of 20 ns (nanoseconds). This timing diagram
indicates what happens when gate inputs B and C are held at constant values 1 and
0, respectively, and input A is changed to 1 at t = 40 ns and then changed back to 0
at t = 100 ns. The output of gate G, changes 20 ns after A changes, and the output
of gate G, changes 20 ns after G, changes.

Figure 8-6 shows a timing diagram for a circuit with an added delay element. The
input X consists of two pulses, the first of which is 2 microseconds (2 X 107 second)
wide and the second is 3 microseconds wide. The delay element has an output Y which

FIGURE 8-5
Timing Diagram for .
AND-NOR Circuit
A—] G Gi Sp20ns|<  >20ms

B=1—] ‘ G,

40 60 80 100 120 140  f(ns)
JZOnsL *JZOHSL*

is the same as the input except that it is delayed by 1 microsecond. That is, Y changes
to a 1 value 1 microsecond after the rising edge of the X pulse and returns to 0 1
microsecond after the falling edge of the X pulse. The output (Z) of the AND gate
should be 1 during the time interval in which both X and Y are 1. If we assume a small
propagation delay in the AND gate (), then Z will be as shown in Figure 8-6.

FIGURE 8-6 Timing Diagram for Circuit with Delay

1 ws Delay -
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8.4 Hazards in Combinational Logic

When the input to a combinational circuit changes, unwanted switching transients
may appear in the output. These transients occur when different paths from input to
output have different propagation delays. If, in response to any single input change
and for some combination of propagation delays, a circuit output may momentarily go
to 0 when it should remain a constant 1, we say that the circuit has a static 1-hazard.
Similarly, if the output may momentarily go to 1 when it should remain a 0, we say that
the circuit has a static 0-hazard. If, when the output is supposed to change from 0 to 1
(or 1 to 0), the output may change three or more times, we say that the circuit has a
dynamic hazard. Figure 8-7 shows possible outputs from a circuit with hazards. In each
case the steady-state output of the circuit is correct, but a switching transient appears
at the circuit output when the input is changed.

FIGURE 8-7 Types of Hazards

1 1 1 1 1 1 1

(a) Static 1-hazard (b) Static 0-hazard (c) Dynamic hazards

Figure 8-8(a) illustrates a circuit with a static 1-hazard. If A = C=1,then F= B + B' =1,
so the F output should remain a constant 1 when B changes from 1 to 0. However, as shown
in Figure 8-8(b), if each gate has a propagation delay of 10 ns, £ will go to 0 before D goes
to 1, resulting in a momentary 0 (a glitch caused by the 1-hazard) appearing at the output
F. Note that right after B changes to 0, both the inverter input (B) and output (B’) are 0
until the propagation delay has elapsed. During this period, both terms in the equation for
Fare 0,s0 F momentarily goes to 0.

Note that hazards are properties of the circuit and are independent of the delays
existing in the circuit. If the circuit is free of hazards, then for any combination of
delays that might exist in the circuit and for any single input change, the output will
not contain a transient. On the other hand, if a circuit contains a hazard, then there
is some combination of delays and some input change for which the circuit output
contains a transient. The combination of delays that produces the transient may or
may not be likely to occur in an implementation of the circuit; in some cases it is
very unlikely that such delays would occur.

Besides depending on the delays existing in a circuit, the occurrence of tran-
sients depends on how gates respond to input changes. In some cases, if multiple
input changes to a gate occur within a short time period, a gate may not respond to
the input changes. For example, in Figure 8-8 assume the inverter has a delay of 2 ns
rather than 10 ns. Then the D and E changes reaching the output OR gate are 2 ns
apart, in which case the OR gate may not generate the 0 glitch. A gate exhibiting
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FIGURE 8-8 A
Detection of a BC 0 1
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(b) Timing chart

this behavior is said to have an inertial delay. Quite often the inertial delay value is
assumed to be the same as the propagation delay of the gate; if this is the case, the
circuit of Figure 8-8 will generate the 0 glitch only for inverter delays greater than
10 ns. In contrast, if a gate always responds to input changes (with a propagation
delay), no matter how closely spaced the input changes may be, the gate is said to
have an ideal or transport delay. If the OR gate in Figure 8-8 has an ideal delay, then
the 0 glitch would be generated for any nonzero value of the inverter delay. (Inertial
and transport delay models are discussed more in Unit 10.) Unless otherwise noted,
the examples and problems in this unit assume that gates have an ideal delay.

Hazards can be detected using a Karnaugh map [Figure 8-8(a)]. As seen on the
map, no loop covers both minterms ABC and AB'C.Soif A = C = 1 and B changes,
both terms can momentarily go to 0, resulting in a glitch in F. We can detect hazards
in a two-level AND-OR circuit, using the following procedure:

1. Write down the sum-of-products expression for the circuit.

2. Plot each term on the map and loop it.

3. If any two adjacent 1’s are not covered by the same loop, a 1-hazard exists for
the transition between the two 1’s. For an n-variable map, this transition occurs
when one variable changes and the other n—1 variables are held constant.

If we add a loop to the map of Figure 8-8(a) and, then, add the corresponding
gate to the circuit (Figure 8-9), this eliminates the hazard. The term AC remains 1
while B is changing, so no glitch can appear in the output. Note that F'is no longer
a minimum sum of products.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

226 unit8
FIGURE 8-9
Circuit with Hazard
Removed
Figure 8-10(a) shows a circuit with several 0-hazards. The product-of-sums rep-
resentation for the circuit output is
F=(A+C)(A +D')B' +C' + D)
The Karnaugh map for this function (Figure 8-10(b)) shows four pairs of adja-
cent 0’s that are not covered by a common loop as indicated by the arrows. Each
of these pairs corresponds to a 0-hazard. For example, when A =0,B=1,D =
0, and C changes from 0 to 1, a spike may appear at the Z output for some com-
bination of gate delays. The timing diagram of Figure 8-10(c) illustrates this
FIGURE 8-10 AB co———————— o
Detection of a CD 00 0l 11 10

Static 0-Hazard at 5 ns, 0—1
C at 10 ns, 0—1 o 0

A at 15 ns, 0—1
at 18 ns, 1—0 ‘hﬁlﬂ 0 0 0 0
4 Z | ‘
D — | |
1 0 0 \
B | ; |
|
Y | 10 0| o) |
X at 13 ns, 1—0 | |
at 8 ns, 1—0 L - ]
S, I
(a) Circuit with a static 0-hazard (b) Karnaugh map for circuit of (a)
c |
|
W 1 [
1
? —
T T T
r | | | I—
T T T T
Z | | | | | |
| | | | 1 1 1
0 5 8 10 13 15 18 20

(c) Timing diagram illustrating 0-hazard of (a)
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assuming gate delays of 3 ns for each inverter, and of 5 ns for each AND gate
and each OR gate.

We can eliminate the 0-hazards by looping additional prime implicants that
cover the adjacent 0’s that are not already covered by a common loop. This requires
three additional loops as shown in Figure 8-11. The resulting equation is

F=A+O)A" +D)B +C +D)(C+D')A+B +D)A +B + ()

and the resulting circuit requires seven gates in addition to the inverters.

FIGURE 8-11 AB m——————————
Karnaugh Map cpN\__ 0 0l 11 10
Removing Hazards -
of Figure 8-10. o0 (0 \‘_]/

Hazards in circuits with more than two levels can be determined by deriving either
a SOP or POS expression for the circuit that represents a two-level circuit containing
the same hazards as the original circuit. The SOP or POS expression is derived in the
normal manner except that the complementation laws are not used, i.e., xx" = 0 and x
+ x’ = 1 are not used. Consequently, the resulting SOP (POS) expression may contain
products (sums) of the form xx'a (x + x" + B). (« is a product of literals or it may be
null; Bis a sum of literals or it may be empty.) The complementation laws are not used
because we are analyzing the circuit behavior resulting from an input change. As that
input change propagates through the circuit, at a given point in time a line tending
toward the value x may not have the value that is the complement of a line tending
toward the value x'. In the SOP expression, a product of the form xx’« represents a
pseudo gate that may temporarily have the output value 1 as x changes and if & = 1.

Given the SOP expression, the circuit is analyzed for static 1-hazards the same
as for a two-level AND-OR circuit, i.e., the products are mapped on a Karnaugh
map and if two 1’s are adjacent on the map and not included in one of the products,
they correspond to a static 1-hazard. The circuit can have a static 0-hazard or a
dynamic hazard only if the SOP expression contains a term of the form xx'a. A
static 0-hazard exists if there are two adjacent 0’s on the Karnaugh map for which
a = 1 and the two input combinations differ just in the value of x. A dynamic hazard
exists if there is a term of the form xx’a and two conditions are satisfied: (1) There
are adjacent input combinations on the Karnaugh map differing in the value of x,
with @ = 1 and with opposite function values, and (2) for these input combinations
the change in x propagates over at least three paths through the circuit.
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As an example consider the circuit of Figure 7-7 (page 194). The expression for
the circuit output is

f=(" +ad + bd)(c+ a'd+ bd)
=cc' +acd + bed +a'c’'d+ aa'dd + a'bdd’ + bc'd + abdd' + bdd’
=cc' + acd + bcd' + a'c’'d + aa'dd’ + bc'd + bdd'

The Karnaugh map for this function is shown as the circled 1’s in Figure 7-3
(page 192). It is derived in the normal way ignoring the product terms containing
both a variable and its complement. The circuit does not contain any static
1-hazards because each pair of adjacent 1’s are covered by one of the product terms.
Potentially, the terms cc’ and bdd’ may cause either static 0- or dynamic hazards or
both; the first for ¢ changing and the second for d changing. (The term aa’dd’ can-
not cause either hazard because, for example, if a changes the dd’ part of the prod-
uct forces it to 0.) With a = 0, b = 0, and d = 0 and ¢ changing, the circuit output is
0 before and after the change, and because the cc’ term can cause the output to
temporarily become 1, this transition is a static 0O-hazard. Similarly, a change in ¢, with
a=1,b=0andd = 1,is a static 0-hazard. The cc’ term cannot cause a dynamic haz-
ard because there are only two physical paths from input c to the circuit output.

The term bdd' can cause a static 0- or dynamic hazard only if b = 1. From the
Karnaugh map, it is seen that, with b = 1 and d changing, the circuit output changes
for any combination of a and c, so the only possibility is that of a dynamic hazard.
There are four physical paths from d to the circuit output, so a dynamic hazard
exists if a d change can propagate over at least three of those paths. However, this
cannot happen because, with ¢ = 0, propagation over the upper two paths is blocked
at the upper OR gate because ¢’ = 1 forces the OR gate output to be 1, and with
¢ = 1 propagation over the lower two paths is blocked at the lower OR gate. The cir-
cuit does not contain a dynamic hazard.

Another approach to finding the hazards is as follows: If we factor the original
expression for the circuit output (without using the complementation laws), we get

f=( +a+b)(c +d)c+a +b)c+d)

Plotting the 0’s of f from this expression on a Karnaugh map reveals that there
are 0-hazards when a = b = d = 0 and c changes, and also when b = 0,a =d =1,
and c changes. An expression of the form x + x" does not appear in any sum term
of f, and this indicates that there are no 1-hazards or dynamic hazards.

To design a circuit which is free of static and dynamic hazards, the following pro-
cedure may be used:

1. Find a sum-of-products expression (F') for the output in which every pair of
adjacent 1’s is covered by a 1-term. (The sum of all prime implicants will always
satisfy this condition.) A two-level AND-OR circuit based on this F' will be
free of 1-, 0-, and dynamic hazards.

2. If a different form of the circuit is desired, manipulate F’ to the desired form
by simple factoring, DeMorgan’s laws, etc. Treat each x; and x;" as independent
variables to prevent introduction of hazards.
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Alternatively, you can start with a product-of-sums expression in which every pair
of adjacent 0’s is covered by a O-term, and follow the dual procedure to design a
hazard-free two-level OR-AND circuit.

It should be emphasized that the discussion of hazards and the possibility of
resulting glitches in this section has assumed that only a single input can change at
a time and that no other input will change until the circuit has stabilized. If more
than one input can change at one time, then nearly all circuits will contain hazards,
and they cannot be eliminated by modifying the circuit implementation. The circuit
corresponding to the Karnaugh map of Figure 8-11 illustrates this. Consider the
input change (A, B, C, D) = (0,1,0,1) to (0,1, 1,0) with both C and D changing. The
output is 0 before the change and will be 0 after the circuit has stabilized; however,
if the C change propagates through the circuit before the D change, then the circuit
will output a transient 1. Effectively, the input combination to the circuit can tem-
porarily become (A, B, C, D) = (0, 1, 1, 1), and the circuit output will temporarily
become 1 no matter how it is implemented.

Glitches are of most importance in asynchronous sequential circuits. The
latches and flip-flops discussed in Unit 11 are the most important examples of
asynchronous sequential circuits. Although more than one input can change at
the same time for some of these circuits, restrictions are placed on the changes so
that it is necessary to analyze the circuits for hazards only when a single input
changes. Consequently, the discussion in this section is relevant to this important
class of circuits.

Simulation and Testing of Logic Circuits

An important part of the logic design process is verifying that the final design is
correct and debugging the design if necessary. Logic circuits may be tested either
by actually building them or by simulating them on a computer. Simulation is gen-
erally easier, faster, and more economical. As logic circuits become more and more
complex, it is very important to simulate a design before actually building it. This
is particularly true when the design is built in integrated circuit form, because fab-
ricating an integrated circuit may take a long time and correcting errors may be
very expensive. Simulation is done for several reasons, including (1) verification
that the design is logically correct, (2) verification that the timing of the logic sig-
nals is correct, and (3) simulation of faulty components in the circuit as an aid to
finding tests for the circuit.

To use a computer program for simulating logic circuits, you must first speci-
fy the circuit components and connections; then, specify the circuit inputs; and,
finally, observe the circuit outputs. The circuit description may be input into a
simulator in the form of a list of connections between the gates and other logic
elements in the circuit, or the description may be in the form of a logic diagram
drawn on a computer screen. Most modern logic simulators use the latter
approach. A typical simulator which runs on a personal computer uses switches
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or input boxes to specify the inputs and probes to read the logic outputs. Alternatively,
the inputs and outputs may be specified as sequences of 0’s and 1’s or in the form of
timing diagrams.

A simple simulator for combinational logic works as follows:

=

The circuit inputs are applied to the first set of gates in the circuit, and the out-
puts of those gates are calculated.

The outputs of the gates which changed in the previous step are fed into the next
level of gate inputs. If the input to any gate has changed, then the output of that
gate is calculated.

Step 2 is repeated until no more changes in gate inputs occur. The circuit is then
in a steady-state condition, and the outputs may be read.

Steps 1 through 3 are repeated every time a circuit input changes.

N

w

&

The two logic values, 0 and 1, are not sufficient for simulating logic circuits. At
times, the value of a gate input or output may be unknown, and we will represent this
unknown value by X. At other times we may have no logic signal at an input, as in the
case of an open circuit when an input is not connected to any output. We use the logic
value Z to represent an open circuit, or high impedance (hi-Z) connection. The dis-
cussion that follows assumes we are using a four-valued logic simulator with logic
values 0, 1, X (unknown), and Z (hi-Z).

Figure 8-12(a) shows a typical simulation screen on a personal computer. The
switches are set to 0 or 1 for each input. The probes indicate the value of each gate
output. In Figure 8-12(b), one gate has no connection to one of its inputs. Because
that gate has a 1 input and a hi-Z input, we do not know what the hardware will do,
and the gate output is unknown. This is indicated by an X in the probe.

FIGURE 8-12

(a) Simulation screen showing switches (b) Simulation screen with missing gate input

Table 8-1 shows AND and OR functions for four-valued logic simulation. These
functions are defined in a manner similar to the way real gates work. For an AND gate,
if one of the inputs is 0, the output is always 0 regardless of the other input. If one input
is 1 and the other input is X (we do not know what the other input is), then the output
is X (we do not know what the output is). If one input is 1 and the other input is Z (it
has no logic signal), then the output is X (we do not know what the hardware will do).
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TABLE 8-1
AND and OR
Functions for

Four-Valued
Simulation

For an OR gate, if one of the inputs is 1, the output is 1 regardless of the other input.
If one input is 0 and the other input is X or Z, the output is unknown. For gates with
more than two inputs, the operations may be applied several times.

A combinational logic circuit with a small number of inputs may easily be
tested with a simulator or in lab by checking the circuit outputs for all possible
combinations of the input values. When the number of inputs is large, it is usual-
ly possible to find a relatively small set of input test patterns which will test for
all possible faulty gates in the circuit.!

If a circuit output is wrong for some set of input values, this may be due to sev-
eral possible causes:

1. Incorrect design
2. Gates connected wrong
3. Wrong input signals to the circuit

If the circuit is built in lab, other possible causes include

e

Defective gates
Defective connecting wires

gl

Fortunately, if the output of a combinational logic circuit is wrong, it is very easy
to locate the problem systematically by starting at the output and working back
through the circuit until the trouble is located. For example, if the output gate has the
wrong output and its inputs are correct, this indicates that the gate is defective. On
the other hand, if one of the inputs is wrong, then either the gate is connected wrong,
the gate driving this input has the wrong output, or the input connection is defective.

————== The function F = AB(C'D + CD') + A'B'(C + D) is realized by the circuit of
Example Figure 8-13:

FIGURE 8-13
Logic Circuit with
Incorrect Output

‘Methods for test pattern generation are described in Alexander Miczo, Digital Logic Testing and
Simulation, 2nd ed (John Wiley & Sons, 2003).
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When a student builds the circuit in a lab, he finds that when A = B = C = D = 1,the
output F has the wrong value, and that the gate outputs are as shown in Figure 8-13.
The reason for the incorrect value of F can be determined as follows:

1. The output of gate 7 (F) is wrong, but this wrong output is consistent with the
inputs to gate 7, thatis, 1 + 0 = 1. Therefore, one of the inputs to gate 7 must be
wrong.

2. In order for gate 7 to have the correct output (F = 0), both inputs must be 0.
Therefore, the output of gate 5 is wrong. However, the output of gate 5 is con-
sistent with its inputs because 1 - 1 - 1 = 1. Therefore, one of the inputs to gate
5 must be wrong.

3. Either the output of gate 3 is wrong, or the A or B input to gate 5 is wrong.
Because C'D + CD' = 0, the output of gate 3 is wrong.

4. The output of gate 3 is not consistent with the outputs of gates 1 and 2 because
0 + 0 # 1. Therefore, either one of the inputs to gate 3 is connected wrong, gate 3
is defective, or one of the input connections to gate 3 is defective.

This example illustrates how to troubleshoot a logic circuit by starting at the output
gate and working back until the wrong connection or defective gate is located.

Problems

Complete the timing diagram for the given circuit. Assume that both gates have a
propagation delay of 5 ns.

Consider the following logic function.
F(A, B, C, D) =% m(0,4,5,10,11, 13, 14, 15)

(a) Find two different minimum circuits which implement F using AND and OR
gates. Identify two hazards in each circuit.

(b) Find an AND-OR circuit for F which has no hazards.

(c) Find an OR-AND circuit for F which has no hazards.
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8.3 For the following circuit:

CI[>0—L ¢
— >0

A
D

(a) Assume that the inverters have a delay of 1 ns and the other gates have a delay
of 2 ns. Initially A = 0 and B = C = D =1, and C changes to 0 at time = 2 ns.
Draw a timing diagram and identify the transient that occurs.

(b) Modify the circuit to eliminate the hazard.

8.4 Using four-valued logic, find A, B, C, D, E, F, G,and H.
B
(no connection) — D F
;j > D H

B

8.5 The circuit below was designed to implement the logic equation F = AB'D + BC'D’
+ BCD, but it is not working properly. The input wires to gates 1,2, and 3 are so tight-
ly packed, it would take you a while to trace them all back to see whether the inputs
are correct. It would be nice to only have to trace whichever one is incorrectly wired.
When A = B =0and C = D = 1, the inputs and outputs of gate 4 are as shown. Is
gate 4 working properly? If so, which of the other gates either is connected incor-
rectly or is malfunctioning?

8.6 (a) Assume the inverters have a delay of 1 ns and the other gates have a delay of
2 ns. Initially A = B =0 and C = D = 1; C changes to 0 at time 2 ns. Draw a
timing diagram showing the glitch corresponding to the hazard.

(b) Modify the circuit so that it is hazard free. (Leave the circuit as a two-level,
OR-AND circuit.)
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8.7 A two-level, NOR-NOR circuit implements the function
fla,byc,d)y=(a+d)b +c+d)(a +c +d)b + ' +d).
(a) Find all hazards in the circuit.
(b) Redesign the circuit as a two-level, NOR-NOR circuit free of all hazards and
using a minimum number of gates.

8.8 F(A B C D)=2%2m(0,2,3,56,7,8,9,13,15)
(a) Find three different minimum AND-OR circuits that implement F. Identify two
hazards in each circuit. Then find an AND-OR circuit for F that has no hazards.
(b) There are two minimum OR-AND circuits for F;each has one hazard. Identify the
hazard in each circuit, and then find an OR-AND circuit for F that has no hazards.

8.9 Consider the following three-level NOR circuit:
(a) Find all hazards in this circuit.
(b) Redesign the circuit as a three-level NOR circuit that is free of all hazards.

D ]

8.10 Draw the timing diagram for V and Z for the circuit. Assume that the AND gate has
a delay of 10 ns and the OR gate has a delay of 5 ns.

o

~ ==

) >~

|
I
I
[ I
[ I
5 10 15 20 25 30 35 40 45 50 55 t(ns)

N |< |=|>]|=
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8.11 Consider the three-level circuit corresponding to the expression f(A, B, C, D) =
(A + B)(B'C' + BD").
(a) Find all hazards in this circuit.
(b) Redesign the circuit as a three-level NOR circuit that is free of all hazards.

8.12 Complete the timing diagram for the given circuit. Assume that both gates have a
propagation delay of 5 ns.

w
| I | I [
b% T | | T
Y | |
X } ’ | | | | | |
y— [ [ [ [ [ [ [
v | | | | | | | |
| | | | | | | |
[ [ [ [ [ [ [ [
z | | | | | | | |
| | | | | | | |
0 5 10 15 20 25 30 35 40 t(ns)

8.13 Implement the logic function from Figure 8.10(b) as a minimum sum of products.
Find the static hazards and tell what minterms they are between. Implement the
same logic function as a sum of products without any hazards.

8.14 Using four-valued logic, find A, B, C, D, E, F, G,and H.

C
(no connection) A
\ P F
= g
0
B G

no connection) —
( )5

8.15 The following circuit was designed to implement the logic equation F = (A + B’
+ C')A" + B+ C')(A’ + B’ + C),but it is not working properly. The input wires to
gates 1,2, and 3 are so tightly packed, it would take you a while to trace them all back
to see whether the inputs are correct. It would be nice to only have to trace whichev-
er one is incorrectly wired. When A = B = C =1, the inputs and outputs of gate 4
are as shown. Is gate 4 working properly? If so, which of the other gates either is con-
nected incorrectly or is malfunctioning?
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8.16 Consider the following logic function.
F(A, B, C,D) =%2m(0,2,5,6,7,8,9,12,13,15)

(a) Find two different minimum AND-OR circuits which implement F. Identify two
hazards in each circuit. Then find an AND-OR circuit for F that has no hazards.

(b) The minimum OR-AND circuit for F has one hazard. Identify it, and then find
an OR-AND circuit for F that has no hazards.

Design Problems

Seven-Segment Indicator

Several of the problems involve the design of a circuit to drive a seven-segment indi-
cator (see Figure 8-14). The seven-segment indicator can be used to display any one
of the decimal digits 0 through 9. For example, “1” is displayed by lighting segments
2 and 3, “2” by lighting segments 1,2, 7, 5, and 4, and “8” by lighting all seven seg-
ments. A segment is lighted when a logic 1 is applied to the corresponding input on
the display module.

FIGURE 8-14 Seven-Segment Indicator
Circuit Driving

Seven-Segment ~ T °l
Module ., ﬁ_o ) 1
Inputs From B Circuit [ —% 1 ° 3 6' 7 ‘2
Toggle c to Be X4 o4 ap
Switches | € | Designed ——u X5 | o5 5 ’ ’3

M_ o
M 6 -4

—o 7

8.A Design an 8-4-2-1 BCD code converter to drive a seven-segment indicator. The four
inputs to the converter circuit (A, B, C, and D in Figure 8-14) represent an 8-4-2-1
binary-coded-decimal digit. Assume that only input combinations representing the
digits O through 9 can occur as inputs, so that the combinations 1010 through 1111
are don’t-cares. Design your circuit using only two-, three-, and four-input NAND
gates and inverters. Try to minimize the number of gates required. The variables A,
B, C,and D will be available from toggle switches.

Use I’ 7 (not I’—l ) for 6. Use ’——,’ (not ’:—l’ ) for 9.

Any solution that uses 18 or fewer gates and inverters (not counting the four invert-
ers for the inputs) is acceptable.

8.B Design an excess-3 code converter to drive a seven-segment indicator. The four
inputs to the converter circuit (A, B, C, and D in Figure 8-14) represent an excess-3
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coded decimal digit. Assume that only input combinations representing the digits 0
through 9 can occur as inputs, so that the six unused combinations are don’t-cares.
Design your circuit using only two-, three-, and four-input NAND gates and invert-
ers. Try to minimize the number of gates and inverters required. The variables A, B,
C, and D will be available from toggle switches.

Use ,’_:, (not ,’_-, ) for 6. Use I-’ (not ) for 9.

Any solution with 16 or fewer gates and inverters (not counting the four inverters
for the inputs) is acceptable.

8.C Design a circuit which will yield the product of two binary numbers, n, and m,,
where 00, = n, = 11, and 000, = m, = 101,. For example, if n, = 10, and m, = 001,,
then the product is n, X m, = 10, X 001, = 0010,. Let the variables A and B repre-
sent the first and second digits of n,, respectively (i.e., in this example A = 1 and
B = 0). Let the variables C, D, and E represent the first, second, and third digits of
m,, respectively (in this example C = 0, D = 0,and E = 1). Also let the variables W,
X, Y, and Z represent the first, second, third, and fourth digits of the product. (In
this example W = 0, X = 0, Y = 1,and Z = 0.) Assume that m, > 101, never occurs
as a circuit input.

Circuit

to be
Designed

Design the circuit using only two-, three-, and four-input NOR gates and inverters.
Try to minimize the total number of gates and inverters required. The variables A, B,
C, D,and E will be available from toggle switches. Any solution that uses 15 or fewer
gates and inverters (not counting the five inverters for the inputs) is acceptable.

8.D Work Design Problem 8.C using two-, three-, and four-input NAND gates and
inverters instead of NOR gates and inverters. Any solution that uses 14 gates and
inverters or less (not counting the five inverters for the inputs) is acceptable.

8.E Design a circuit which multiplies two 2-bit binary numbers and displays the answer
in decimal on a seven-segment indicator. In Figure 8-14, A and B are two bits of a
binary number N;, and C and D are two bits of a binary number N,. The product
(N, X N,) is to be displayed in decimal by lighting appropriate segments of the
seven-segment indicator. For example,if A =1, B =0, C =1, and D = 0, the num-
ber “4” is displayed by lighting segments 2, 3, 6, and 7.

Use ,’ (not , 7 ) for 6. Use ’- (not ) for 9.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

238 unit8

Design your circuit using only two-, three-, and four-input NAND gates and invert-
ers. Try to minimize the number of gates required. The variables A, B, C,and D will
be available from toggle switches. Any solution that uses 18 or fewer gates and
inverters (not counting the four inverters for the inputs) is acceptable.

8.F Design a Gray code converter to drive a seven-segment indicator. The four inputs
to the converter circuit (A, B, C, and D in Figure 8-14) represent a decimal digit
coded using the Gray code of Table 1-2. Assume that only input combinations rep-
resenting the digits O through 9 can occur as inputs, so that the six unused combina-
tions are don’t-care terms. Design your circuit using only two-, three-, and four-input
NAND gates and inverters. Try to minimize the numbers of gates and inverters
required. The variables A, B, C, and D will be available from toggle switches.

Use l’_:l (not I’_-l ) for 6. Use ’:—l’ (not ’-—l’ ) for 9.

Any solution with 20 or fewer gates and inverters (not counting the four inverters
for the inputs) is acceptable.

8.G Design a circuit that will add either 1 or 2 to a 4-bit binary number N. Let the inputs
N3, N,, Ny, Ny represent N. The input K is a control signal. The circuit should have
outputs M3, M,, M,, M, which represent the 4-bit binary number M. When K = 0,
M =N+ 1.When K =1, M = N + 2. Assume that the inputs for which M > 1111,
will never occur.

Design the circuit using only two-, three-, and four-input NAND gates and inverters. Try
to minimize the total number of gates and inverters required. The input variables K, N3,
N,, Ny, and N, will be available from toggle switches. Any solution that uses 13 or fewer
gates and inverters (not counting the five inverters for the inputs) is acceptable.

8.H Work Problem 8.A, except use 4-2-1-8 code instead of 8-4-2-1 code. For example,
in 4-2-1-8 code, 9 is represented by 0011. Also change the representations of dig-
its 6 and 9 to the opposite form given in Problem 8.A. Any solution with 20 or
fewer gates and inverters (not counting the four inverters for the inputs) is
acceptable.

8.1 Work Problem 8.B, except use excess-2 code instead of excess-3 code. (In excess-2
code, 0 is represented by 0010, 1 by 0011,2 by 0100, etc.). Any solution with 17 or fewer
gates and inverters (not counting the four inverters for the inputs) is acceptable.

8.J Design a circuit which will multiply a 3-bit binary number CDE by 2, 3, or 5, depend-
ing on the value of a 2-bit code AB (00, 01, or 10), to produce a 4-bit result WXYZ. If
the result has a value greater than or equal to 15, WXYZ should be 1111 to indicate
an overflow. Assume that the code AB = 11 will never occur. Design your circuit
using only two-, three-, and four-input NOR gates and inverters. Try to minimize the
number of gates required. The inputs A, B, C, D, and E will be available from toggle
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switches. Any solution which uses 19 or fewer gates and inverters (not counting the
five inverters for the inputs) is acceptable.

8.K Design a circuit which will divide a 5-bit binary number by 3 to produce a 4-bit bina-
ry quotient. Assume that the input number is in the range 0 through 27 and that
numbers in the range 28 through 31 will never occur as inputs. Design your circuit
using only two-, three-, and four-input NAND gates and inverters. Try to minimize
the number of gates required. The inputs A, B, C, D, and E will be available from
toggle switches. Any solution which uses 22 or fewer gates and inverters (not count-
ing the five inverters for the inputs) is acceptable.

8.L Design an excess-3 code converter to drive a seven-segment indicator. The four
inputs (A, B, C, D) to the converter circuit represent an excess-3 digit. Input com-
binations representing the numbers 0 through 9 should be displayed as decimal dig-
its. The input combinations 0000, 0001, and 0010 should be interpreted as an error,
and an “E” should be displayed. Assume that the input combinations 1101, 1110, and
1111 will never occur. Design your circuit using only two-, three-, and four-input
NOR gates and inverters. Any solution with 18 or fewer gates and inverters (not
counting the four inverters for the inputs) is acceptable.

Use I’_:l (not I’_-l ) for 6. Use ’:—,’ (not ’-—,’ ) for 9.

8.M Design a circuit which displays the letters A through J on a seven-segment indica-
tor. The circuit has four inputs W, X, Y, Z which represent the last 4 bits of the
ASCII code for the letter to be displayed. For example, if WXYZ = 0001, “A” will
be displayed. The letters should be displayed in the following form:

I I Y I N I I I [
[ Sy Ny Iy By B B R N |

Design your circuit using only two-, three-, and four-input NOR gates and inverters.
Any solution with 22 or fewer gates and inverters (not counting the four inverters
for the inputs) is acceptable.

8.N A simple security system for two doors consists of a card reader and a keypad.

[— |
Card Reader

Logic

Circuit
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A person may open a particular door if he or she has a card containing the corre-
sponding code and enters an authorized keypad code for that card. The outputs
from the card reader are as follows:

A

No card inserted 0
Valid code for door 1 0
Valid code for door 2 1
Invalid card code 1

O = = 0O o]

To unlock a door, a person must hold down the proper keys on the keypad and,
then, insert the card in the reader. The authorized keypad codes for door 1 are 101
and 110, and the authorized keypad codes for door 2 are 101 and 011. If the card has
an invalid code or if the wrong keypad code is entered, the alarm will ring when the
card is inserted. If the correct keypad code is entered, the corresponding door will
be unlocked when the card is inserted.

Design the logic circuit for this simple security system. Your circuit’s inputs will con-
sist of a card code AB, and a keypad code CDE. The circuit will have three outputs
XYZ (if X or Y =1, door 1 or 2 will be opened; if Z = 1, the alarm will sound).
Design your circuit using only two-, three-, and four-input NOR gates and inverters.
Any solution with 19 or fewer gates and inverters (not counting the five inverters
for the inputs) is acceptable. Use toggle switches for inputs A, B, C, D, and E when
you test your circuit.

8.0 Work Design Problem 8.A using two-, three-, and four-input NOR gates and invert-
ers instead of NAND gates and inverters. Any solution that uses 19 gates and invert-
ers or fewer (not counting the four inverters for the inputs) is acceptable.

8.P Work Design Problem 8.F using two-, three-, and four-input NOR gates and inverters
instead of NAND gates and inverters. Any solution that uses 21 gates and inverters or
fewer (not counting the four inverters for the inputs) is acceptable.

8.Q Work Design Problem 8.H using two-, three-, and four-input NOR gates and
inverters instead of NAND gates and inverters. Any solution that uses 17 gates and
inverters or fewer (not counting the four inverters for the inputs) is acceptable.

8.R Work Design Problem 8.1 using two-, three-, and four-input NOR gates and inverters
instead of NAND gates and inverters. Any solution that uses 16 gates and inverters or
fewer (not counting the four inverters for the inputs) is acceptable.

8.S Design a “disk spinning” animation circuit for a CD player. The input to the circuit
will be a 3-bit binary number A;A,A; provided by another circuit. It will count from
0 to 7 in binary, and then it will repeat. (You will learn to design such counters in
Unit 12.) The animation will appear on the top four lights of the LED display of
Figure 8-14,i.e.,on X}, X,, X, and X, going clockwise. The animation should consist
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of a blank spot on a disk spinning around once, beginning with X;. Then, the entire
disk should blink on and off twice. The pattern is shown.

S | N/ N/ N/ N N/ N

b N\
Ko (e e O e

Y [

I ' [ Fd Y |
LN AN LN LN LN LN N LA

[ SN v S L L

A A, A3= 000 001 010 011 100 101 110 111

Design your circuit using only two-, three-, and four-input NOR gates and inverters.
Try to minimize the number of gates required. Any solution which uses 11 or fewer
gates (not counting the four inverters for the inputs) is acceptable.
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Multiplexers, Decoders, and
Programmable Logic Devices

Objectives

1. Explain the function of a multiplexer. Implement a multiplexer using
gates.

2. Explain the operation of three-state buffers. Determine the resulting out-
put when three-state buffer outputs are connected together. Use three-
state buffers to multiplex signals onto a bus.

3. Explain the operation of a decoder and encoder. Use a decoder with
added gates to implement a set of logic functions. Implement a decoder
or priority encoder using gates.

4. Explain the operation of a read-only memory (ROM). Use a ROM to imple-
ment a set of logic functions.

5. Explain the operation of a programmable logic array (PLA). Use a PLA to
implement a set of logic functions. Given a PLA table or an internal con-
nection diagram for a PLA, determine the logic functions realized.

6. Explain the operation of a programmable array logic device (PAL).
Determine the programming pattern required to realize a set of logic
functions with a PAL.

7. Explain the operation of a complex programmable logic device (CPLD)
and a field-programmable gate array (FPGA).

8. Use Shannon’s expansion theorem to decompose a switching function.

242
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Study Guide

1. Read Section 9.1, Introduction.

2. Study Section 9.2, Multiplexers.
(a) Draw a logic circuit for a 2-to-1 multiplexer (MUX) using gates.

(b) Write the equation for a 4-to-1 MUX with control inputs A and C.

Z =
(c) By tracing signals on Figure 9-3, determine what will happen to Zif A =1,
B =0 and C changes from 0 to 1.

(d) Use three 2-to-1 MUXes to make a 4-to-1 MUX with control inputs A
and B. Draw the circuit. (Hint: One MUX should have [, and /; inputs,
and another should have I, and I; inputs.)

(e) Observe thatif A =0,A® B = B,and thatif A =1,A ® B = B'. Using
this observation, construct an exclusive-OR gate using a 2-to-1 multi-
plexer and one inverter.

(f) Work Problems 9.1 and 9.2.
4
(g) This section introduces bus notation. The bus symbol 4 +

represents a group of four wires:
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Draw the bus symbol for
B,
B,
By

(h) Represent the circuit of Figure 4-3 by one 4-bit full adder with two bus
inputs, one bus output, and terminals for carry input C, and output C,.
Note that the carries C;, C,, and C; will not appear on your circuit diagram
because they are signals internal to the 4-bit adder.

Study Section 9.3, Three-State Buffers.

(a) Determine the output of each three-state buffer:

o b

(b) Determine the inputs for each three-state buffer (use X if an input is a
don’t-care).

o b

(c) Determine the output for each circuit. Use X to represent an unknown
output.

0
N
|

0

—

0

b
NI

\ /—

C

(d) The symbol S ,  Trepresents 2 three-state buffers with a common
A 7_{' >~ B

control input:
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C
Ao $ B,

G
E, _$ £,
El _& [“I
20 _} Fy

Using bus notation, draw an equivalent circuit for:

(e) For the following circuit, determine the 4-bit output (P) if M =0.

0101

M

1100

Repeat for M = 1.

4

ARy

(f) Specify the AND-gate inputs so that the given circuit is equivalent to the
4-to-1 MUX in Figure 9-2. (Z in the following figure represents an output
terminal, not high impedance.)

:}\
]

1 —

1 )—

Iy

N
I, 4)—<
7 —

>

245
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(g) Work Problem 9.3.

4. Study Section 9.4, Decoders and Encoders.

(a) The 7442 4-to-10 line decoder (Figure 9-14) can be used as a 3-to-8 line
decoder. To do this, which three lines should be used as inputs?

The remaining input line should be set equal to
(b) Complete the following table for a 4-to-2 priority encoder:

Yo Y1 Y2 V3 a b ¢

What will a, b, and ¢ be if y, y; y, y3is 0101?
(c) Work Problems 9.4,9.5, and 9.6.
5. Study Section 9.5, Read-Only Memories.

(a) The following diagram shows the pattern of 0’s and 1’s stored in a ROM
with eight words and four bits per word. What will be the values of F, F,,
Fyand F,if A=0and B=C=1?

Give the minterm expansions for F; and F,:

0110
1 010
0001
1 010
1 101
1 110
0000
0101

F | F
F, F,

A —>

B —>| Decoder

C —>

 YYYYYYY

Fl =
F2 =
(b) When asked to specify the size of a ROM, give the number of words and
the number of bits per word.
What size ROM is required to realize four functions of 5 variables?

What size ROM is required to realize eight functions of 10 variables?
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(¢) When specifying the size of a ROM, assume that you are specifying a stan-
dard size ROM with 2" words. What size ROM is required to convert 8-4-
2-1 BCD code to 2-out-of-5 code? (See Table 1-2, page 21.)

What size ROM would be required to realize the decoder given in
Figure 9-14?

(d) Draw an internal connection diagram for a ROM which would perform the
same function as the circuit of Figure 7-20. (Indicate the presence of switch-
ing elements by dots at the intersection of the word lines and output lines.)

(e) Explain the difference between a mask-programmable ROM and an EEP-
ROM. Which would you use for a new design which had not yet been
debugged?

(f) Work Problem 9.7.

Study Section 9.6, Programmable Logic Devices.

(a) When you are asked to specify the size of a PLA, give the number of inputs,
the number of product terms, and the number of outputs.
What size PLA would be required to realize Equations (7-22) if no
simplification of the minterm expansions were performed?

(b) If the realization of Equations (7-22) shown in Figure 7-20 were convert-
ed to a PLA realization, what size PLA would be required?

(c) Specify the contents of the PLA of question (b) in tabular form. Your table
should have four rows. (You will only need seven 1’s on the right side of your
table. If you get eight 1’s, you are probably doing more work than is necessary.)

(d) Draw an internal connection diagram for the PLA of (b). (Use X’s to indi-
cate the presence of switching elements in the AND and OR arrays.)

Downloaded From : www.EasyEngineering.net



248 unit9

Downloaded From : www.EasyEngineering.net

(e) Given the following PLA table, plot maps for Z;, Z,, and Z;.

ABC Z‘| Zz 23 A

“00 110 B0 0 I 0 1
(1) g" 1 g g 00 00 00

(1) 1 1 (1) (1) 1 01 01 01

000 0 0 1

Z, Zy Z3

(The Z, map should have six 1’s, Z, should have five, and Z; should have four.)
(f) For a truth table, any combination of input values will select exactly one
row. Is this statement true for a PLA table?

For any combination of input values, the output values from a PLA can be
determined by inspection of the PLA table. Consider Table 9-1, which repre-
sents a PLA with three inputs and four outputs. If the inputs are ABC = 110,
which three rows in the table are selected?

In a given output column, what is the output if some of the selected rows
are 1’s and some are 0’s? (Remember that the output bits for the selected
rows are ORed together.)

When ABC = 110, what are the values of FyF,F,F; at the PLA output?
When ABC = 010, which rows are selected and what are the values of
FyF\F,F; at the PLA output?

(g) Which interconnection points in Figure 9-28(a) must be set in order to

realize the function shown in Figure 9-28(b)?

(h) What size of PAL could be used to realize the 8-to-1 MUX of Figure 9-3?
The quad MUX of Figure 9-5? Give the number of inputs, the number of
OR gates, and the maximum number of inputs to an OR gate.

(i) Work Problems 9.8, 9.9, and 9.10.

Study Section 9.7, Complex Programmable Logic Devices.
Work Problem 9.11.
Study Section 9.8, Field-Programmable Gate Arrays.

(a) For the CLB of Figure 9-33, write a logic equation for H in terms of F, G,
and H,.
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(b) How many 4-variable function generators are required to implement a
four-input OR gate? A 4-variable function with 13 minterms?

(c) Expand the function of Equation 9-7 about the variable c¢ instead of
a. Expand it algebraically and, then, expand it by using the Karnaugh
map of Figure 9-35. (Hint: How should you split the map into two
halves?)

(d) Draw a diagram showing how to implement Equation 9-10 using four
function generators and a 4-to-1 MUX.

(e) In the worst case, how many 4-variable function generators are
required to realize a 7-variable function (assume the necessary MUXes
are available).

(f) Show how to realize K = abcdefg using only two 4-variable function genera-
tors. (Hint: Use the output of one function generator as an input to the other.)

(g) Work Problems 9.12 and 9.13.

When you are satisfied that you can meet all of the objectives, take the readi-
ness test.
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Multiplexers, Decoders, and
Programmable Logic Devices

9.1 Introduction

Until this point we have mainly been concerned with basic principles of logic
design. We have illustrated these principles using gates as our basic building
blocks. In this unit we introduce the use of more complex integrated circuits
(ICs) in logic design. Integrated circuits may be classified as small-scale integra-
tion (SSI), medium-scale integration (MSI), large-scale integration (LSI), or
very-large-scale integration (VLSI), depending on the number of gates in each
integrated circuit package and the type of function performed. SSI functions
include NAND, NOR, AND, and OR gates, inverters, and flip-flops. SSI integrat-
ed circuit packages typically contain one to four gates, six inverters, or one or two
flip-flops. MSI integrated circuits, such as adders, multiplexers, decoders, regis-
ters, and counters, perform more complex functions. Such integrated circuits typ-
ically contain the equivalent of 12 to 100 gates in one package. More complex
functions such as memories and microprocessors are classified as LSI or VLSI
integrated circuits. An LSI integrated circuit generally contains 100 to a few thou-
sand gates in a single package, and a VLSI integrated circuit contains several
thousand gates or more.

It is generally uneconomical to design digital systems using only SSI and MSI
integrated circuits. By using LSI and VLSI functions, the required number of inte-
grated circuit packages is greatly reduced. The cost of mounting and wiring the inte-
grated circuits as well as the cost of designing and maintaining the digital system
may be significantly lower when LSI and VLSI functions are used.

This unit introduces the use of multiplexers, decoders, encoders, and three-
state buffers in logic design. Then read-only memories (ROMs) are described and
used to implement multiple-output combinational logic circuits. Finally, other
types of programmable logic devices (PLDs), including programmable logic
arrays (PLAs), programmable array logic devices (PALs), complex programmable
logic devices (CPLDs), and field-programmable gate arrays (FPGAs) are intro-
duced and used in combinational logic design.

250
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9.2 Multiplexers

A multiplexer (or data selector, abbreviated as MUX) has a group of data inputs and a
group of control inputs. The control inputs are used to select one of the data inputs and
connect it to the output terminal. Figure 9-1 shows a 2-to-1 multiplexer and its switch
analog. When the control input A is 0, the switch is in the upper position and the MUX
output is Z = Iy; when A is 1, the switch is in the lower position and the MUX output is
Z = I,. In other words, a MUX acts like a switch that selects one of the data inputs (/
or /) and transmits it to the output. The logic equation for the 2-to-1 MUX is therefore:

Z=Al,+ Al
FIGURE 9-1 ; ;
2-to-1 Multiplexer 0 S ""\\7
and Switch Analog MUX 4 : Z
[ —> [, —e |
|
|
[
A A
Figure 9-2 shows diagrams for a 4-to-1 multiplexer, 8-to-1 multiplexer, and 2"-to-1
multiplexer. The 4-to-1 MUX acts like a four-position switch that transmits one of
the four inputs to the output. Two control inputs (A and B) are needed to select one
of the four inputs. If the control inputs are AB = 00, the output is /; similarly, the
control inputs 01, 10, and 11 give outputs of /;, I,, and I3, respectively. The 4-to-1 mul-
tiplexer is described by the equation
Z=A'B'ly+ A'BI, + AB'l, + ABI, 9-1)
FIGURE 9-2 s ] T >
Multiplexers I,
Data 177 4-to-1 2" data
, z I, —>| . z
inputs | 7 4| MUX - lines
’ I3 —> 8-to-1 P
I3 —> I, —| MUX —>
e T
A B I()_> |
— 17 —> n control
Control inputs
inputs
ABC
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Similarly, the 8-to-1 MUX selects one of eight data inputs using three control inputs.
It is described by the equation

Z=A'B'C'l,+ A'B'CI, + A'BC'L, + A'BCI,
+ AB'C'I, + AB'CI; + ABC'I, + ABCI, (9-2)

When the control inputs are ABC = 011, the output is /3, and the other outputs are
selected in a similar manner. Figure 9-3 shows an internal logic diagram for the 8-
to-1 MUX. In general, a multiplexer with n control inputs can be used to select any
one of 2" data inputs. The general equation for the output of a MUX with n control
inputs and 2" data inputs is

-1
Z = E o
k=0

where m,, is a minterm of the »n control variables and 7, is the corresponding data input.

FIGURE 9-3 a’b’c’'ly a’b’cly a’bc'ly, a’bcly ab'c¢’'ly ab’ cls abc'ls abcl,
Logic Diagram for | | L L Lt L Ll L 1]

W%QW

Multiplexers are frequently used in digital system design to select the data which
is to be processed or stored. Figure 9-4 shows how a quadruple 2-to-1 MUX is used
to select one of two 4-bit data words. If the control is A = 0, the values of x, x;, x5,
and x; will appear at the z, z;, 25, and z3 outputs; if A = 1, the values of y,, y;, y», and
y; will appear at the outputs.

FIGURE 9-4 Z0 Z z3
Quad Multiplexer \

? i — A (MUX ol
Used to Select Data ( control)
2-to-1 / 2-to-1 / 2-to-1 / -to-1

rT 1T T T

Yo Yo XN X2 )2
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Several logic signals that perform a common function may be grouped together
to form a bus. For example, the sum outputs of a 4-bit binary adder can be grouped
together to form a 4-bit bus. Instead of drawing the individual wires that make up a
bus, we often represent a bus by a single heavy line. The quad MUX of Figure 9-4
is redrawn in Figure 9-5, using bus inputs X and Y, and bus output Z. The X bus
represents the four signals x;, x;, x,, and x3, and similarly for the Y and Z buses.
When A = 0, the signals on bus X appear on bus Z; otherwise, the signals on bus Y
appear. A diagonal slash through a bus with a number beside it specifies the number
of bits in the bus.

FIGURE 9-5

Quad Multiplexer
with Bus Inputs and
Output

The preceding multiplexers do not invert the data inputs as they are routed
to the output. Some multiplexers do invert the inputs, e.g., if the OR gate in
Figure 9-3 is replaced by a NOR gate, then the 8-to-1 MUX inverts the selected
input. To distinguish between these two types of multiplexers, we will say that the
multiplexers without the inversion have active high outputs, and the multiplexers
with the inversion have active low outputs.

Another type of multiplexer has an additional input called an enable. The 8-to-1
MUX in Figure 9-3 can be modified to include an enable by changing the AND
gates to five-input gates. The enable signal E is connected to the fifth input of each
of the AND gates. Then, if £ = 0, Z = 0 independent of the gate inputs /; and the
select inputs a, b, and c. However, if £ = 1, then the MUX functions as an ordinary
8-to-1 multiplexer. The terminology used for the MUX output, i.e., active high and
active low, can be used for the enable as well. As described above, the enable is
active high; £ must be 1 for the MUX to function as a multiplexer. If an inverter is
inserted between E and the AND gates, E must be 0 for the MUX to function as a
multiplexer; the enable is active low.

Four combinations of multiplexers with an enable are possible. The output can
be active high or active low, whereas the enable can be active high or active low. In
a block diagram for the MUX, an active low line is indicated by inserting a bubble
on the line to indicate the inclusion of an inversion.

9.3 Three-State Buffers

A gate output can only be connected to a limited number of other device inputs with-
out degrading the performance of a digital system. A simple buffer may be used to
increase the driving capability of a gate output. Figure 9-6 shows a buffer connected
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FIGURE 9-6

Gate Circuit with W —
Added Buffer %

J-00U

between a gate output and several gate inputs. Because no bubble is present at the
buffer output, this is a noninverting buffer, and the logic values of the buffer input and
output are the same, that is, F = C.

Normally, a logic circuit will not operate correctly if the outputs of two or
more gates or other logic devices are directly connected to each other. For exam-
ple, if one gate has a 0 output (a low voltage) and another has a 1 output (a high
voltage), when the gate outputs are connected together the resulting output volt-
age may be some intermediate value that does not clearly represent either a 0 or
a 1. In some cases, damage to the gates may result if the outputs are connected
together.

Use of three-state logic permits the outputs of two or more gates or other logic
devices to be connected together. Figure 9-7 shows a three-state buffer and its logi-
cal equivalent. When the enable input B is 1, the output C equals A; when B is 0, the
output C acts like an open circuit. In other words, when B is 0, the output C is effec-
tively disconnected from the buffer output so that no current can flow. This is often
referred to as a Hi-Z (high-impedance) state of the output because the circuit offers
a very high resistance or impedance to the flow of current. Three-state buffers are
also called tri-state buffers.

FIGURE 9-7 B

B
Three-State Buffer :
A c = A 4[>—/ o—2°C

Figure 9-8 shows the truth tables for four types of three-state buffers. In Figures
9-8(a) and (b), the enable input B is not inverted, so the buffer output is enabled
when B = 1 and disabled when B = 0.That is, the buffer operates normally when B
= 1, and the buffer output is effectively an open circuit when B = 0. We use the sym-
bol Z to represent this high-impedance state. In Figure 9-8(b), the buffer output is
inverted so that C = A" when the buffer is enabled. The buffers in 9-8(c) and (d)
operate the same as in (a) and (b) except that the enable input is inverted, so the
buffer is enabled when B = 0.
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FIGURE 9-8 B B B B
Four Kinds of
Three-State Buffers c A c A c A C
B Al C B A | C B A |C B A |C
0 o0 Z 0 0 Z 0 0 0 0 o0 1
0 1 z 0 1 z 0o 1 1 0 1 0
1 0 0 1 0 1 1 0 VA 1 0 z
1 1 1 1 1 0 1 1 z 1 1 z
(a) (b) ( (d)

In Figure 9-9, the outputs of two three-state buffers are tied together. When B = 0,
the top buffer is enabled, so that D = A; when B = 1, the lower buffer is enabled, so
that D = C. Therefore, D = B’A + BC. This is logically equivalent to using a 2-to-1
multiplexer to select the A input when B = 0 and the C input when B = 1.

When we connect two three-state buffer outputs together, as shown in Figure 9-10,
if one of the buffers is disabled (output = Z), the combined output F'is the same as the
other buffer output. If both buffers are disabled, the output is Z. If both buffers are
enabled, a conflict can occur. If A = 0 and C = 1, we do not know what the hardware
will do, so the F output is unknown (X). If one of the buffer inputs is unknown, the
F output will also be unknown. The table in Figure 9-10 summarizes the operation of
the circuit. S1 and S2 represent the outputs the two buffers would have if they were not
connected together. When a bus is driven by three-state buffers, we call it a three-state
bus. The signals on this bus can have values of 0, 1, Z, and perhaps X.

A multiplexer may be used to select one of several sources to drive a device
input. For example, if an adder input must come from four different sources, a
4-to-1 MUX may be used to select one of the four sources. An alternative is to

FIGURE 9-9
Data Selection A A—]
Using Three-State B p = H
Buffers
C C—
B
FIGURE 9-10 5
Circuit with Two
Three-State Buffers S1 X 0 1 Z
X X X X X
0 X 0 X 0
1 X X 1 1
z X 0 1 z
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FIGURE 9-11 4
4-Bit Adder with E== 4pic |4

e S
Four Sources for adder Hm

4
One Operand ‘é ‘é ‘é ‘é
EnA EnB EnC EnD I_> c
4 4 4 4 out
A B c D

set up a three-state bus, using three-state buffers to select one of the sources (see
Figure 9-11). In this circuit, each buffer symbol actually represents four three-
state buffers that have a common enable signal.

Integrated circuits are often designed using bi-directional pins for input and out-
put. Bi-directional means that the same pin can be used as an input pin and as an
output pin, but not both at the same time. To accomplish this, the circuit output is
connected to the pin through a three-state buffer, as shown in Figure 9-12. When the
buffer is enabled, the pin is driven with the output signal. When the buffer is dis-
abled, an external source can drive the input pin.

FIGURE 9-12 EN
Integrated Circuit Output ,J\
with Bi-Directional Integrated |
Input-Output Pin Logic
Circuit Input
Bi-Directional

Input-Output Pin

9.4 Decoders and Encoders

The decoder is another commonly used type of integrated circuit. Figure 9-13 shows
the diagram and truth table for a 3-to-8 line decoder. This decoder generates all of
the minterms of the three input variables. Exactly one of the output lines will be 1
for each combination of the values of the input variables.

FIGURE 9-13 | > yo=ab'e’ abc YoYi Y2 Y3YaVYs Y V7
A 3-to-8 Line s 000 1T0000O0O00O0
>y, =a’b’c
Decoder ‘_,b, 001 01000000
0@ — > yp=ane 010 00100000
) 31-&8 —> y3=a’bc 011 00010000
7 decoder > va=ab’c’ 100 00001000
¢ |y —abe 101 00000100
] 110 00000010
—> Y6 =abc 111 00000001
—> y; =abc
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Figure 9-14 illustrates a 4-to-10 decoder. This decoder has inverted outputs
(indicated by the small circles). For each combination of the values of the inputs,
exactly one of the output lines will be 0. When a binary-coded-decimal digit is
used as an input to this decoder, one of the output lines will go low to indicate
which of the 10 decimal digits is present.

FIGURE 9-14 Inputs
A 4-to-10 Line
Decoder

A B C D

vy | Y

Sevisls/Sislele

Outputs

(a) Logic diagram

¢¢¢¢ BCD Input Decimal Output
A B CD ABCD 0123456789
442 0000 0111111111
0001 1011111111
TTTTTTTTTT 0010 1101111111
, 0011 17110111111
o Tig fiz e s ¥ W3 Wiz W1 o 0100 1111011111
(b) Block diagram 0101 1111101111
0110 1111110111
0111 1111111011
1000 17111111101
1001 1111111110
1010 T1T1T1T111111
1011 T1T1T1T111111
1100 T1T11T111111
1101 1T111111111
1110 1T1T11T111111
17111 T1T1T1T111111
(c) Truth Table
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In general, an n-to-2" line decoder generates all 2" minterms (or maxterms) of
the n input variables. The outputs are defined by the equations

v = m;, i=0to2"—1 (noninverted outputs) (9-3)
or
vi=mi =M, i=0to2"—1 (inverted outputs) (9-4)

where m, is a minterm of the n input variables and M, is a maxterm.

Because an n-input decoder generates all of the minterms of n variables, n-variable
functions can be realized by ORing together selected minterm outputs from a decoder.
If the decoder outputs are inverted, then NAND gates can be used to generate the
functions, as illustrated in the following example. Realize

fila, b, c,d) = my + my + myand f5(a, b, ¢, d) = m, + m; + my
using the decoder of Figure 9-14. Rewriting f; and f,, we have
fi = (mimymy)’ fr = (mymymg)’
Then f; and f, can be generated using NAND gates, as shown in Figure 9-15.
An encoder performs the inverse function of a decoder. Figure 9-16 shows an
8-to-3 priority encoder with inputs y, through y,. If input y; is 1 and the other inputs
are (0, then the abc outputs represent a binary number equal to i. For example,if y; = 1,

then abc = 011. If more than one input can be 1 at the same time, the output can be
defined using a priority scheme. The truth table in Figure 9-16 uses the following

FIGURE 9-15
Realization of a '
Multiple-Output :

Circuit Using a 2
Decoder @ —> 3
b —> 4-t0-10 4

Line
Decoder
d —> 6

=)
(=}
\T

fi

b

H S 1 TTT T

Da
Da

FIGURE 9-16 Yo—3 YoYi Y2 ¥3
An 8-to-3 Priority Y,

Encoder >
Vo —>

=
~

3 > 8-to-3
Priority [—> ¢

.
Ya— Encoder

XXXXXXX=0

d
Vo —>

V7>

XXX -=-o0o0o0oo0o0o |

XX -0o0oo0oocoo
~o0o0o0o0o0oo0o0o|X

XXX XXX—-=0o0
XX XXX —=00o0o
XX XX -0000O0O
X 0000000
_ ) 2, 2 0O 0000 | v
- 00— —=00O0O |
0,000,000 ]|Nn
[N N = o X
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scheme: If more than one input is 1, the highest numbered input determines the out-
put. For example, if inputs y;, y,, and ys are 1, the output is abc = 101. The X’s in the
table are don’t-cares; for example, if y5 is 1, we do not care what inputs y, through y,
are. Output d is 1 if any input is 1, otherwise, d is 0. This signal is needed to distin-
guish the case of all 0 inputs from the case where only y, is 1.

9.5 Read-Only Memories

A read-only memory (ROM) consists of an array of semiconductor devices that are
interconnected to store an array of binary data. Once binary data is stored in the
ROM, it can be read out whenever desired, but the data that is stored cannot be
changed under normal operating conditions. Figure 9-17(a) shows a ROM which has
three input lines and four output lines. Figure 9-17(b) shows a typical truth table which
relates the ROM inputs and outputs. For each combination of input values on the
three input lines, the corresponding pattern of 0’s and 1’s appears on the ROM out-
put lines. For example, if the combination ABC = 010 is applied to the input lines, the
pattern FyF,F,F; = 0111 appears on the output lines. Each of the output patterns that
is stored in the ROM is called a word. Because the ROM has three input lines, we have
23 = eight different combinations of input values. Each input combination serves as
an address which can select one of the eight words stored in the memory. Because
there are four output lines, each word is four bits long, and the size of this ROM is
8 words X 4 bits.

A ROM which has n input lines and m output lines (Figure 9-18) contains an array
of 2" words, and each word is m bits long. The input lines serve as an address to select
one of the 2" words. When an input combination is applied to the ROM, the pattern
of 0’s and 1’s which is stored in the corresponding word in the memory appears at the
output lines. For the example in Figure 9-18,if 00 . . . 11 is applied to the input (address
lines) of the ROM, the word 110 . . . 010 will be selected and transferred to the output
lines. A 2" X m ROM can realize m functions of n variables because it can store a truth
table with 2" rows and m columns. Typical sizes for commercially available ROMs
range from 32 words X 4 bits to 512K words X 8 bits, or larger.

FIGURE 9-17 AB C Fo Fi Fy F3
d : A= RroM
An 8-Wor X:é)Bl\l; Thlieﬁllzput B 8 Words 000 1010
Ane: C— | Xx4Bits 001 101 0 | Typical Data
010 0111 | storedin
llll 011 0101 | RoM
Fy F, F Fs 100 1100 | (22words of
N 101 000 1 | 4bpits each)
Four Output Lines 110 17111
(a) Block diagram T 0101
(b) Truth table for ROM
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FIGURE 9-18 ] n Input m Output
Read-Only Memory ninput | —~{  ROM Variables Variables
with n Inputs and Lines { 2:Wor_ds 00 ---00 100 --- 110
m Bits
m Outputs > 00---01 010 --- 111
l l l 88::(1) 1?;(1)?(1) Typical Data
D a— . . Array Stored
m Output Lines . : in ROM
11---00 001 --- 011 2" words of
11 ---01 110---110 .
11---10 | 011..-000 | M Pbitseach)
1M1--- 11 111 ---101
A ROM basically consists of a decoder and a memory array, as shown in Figure 9-19.
When a pattern of n 0’s and 1’s is applied to the decoder inputs, exactly one of the 2"
decoder outputs is 1. This decoder output line selects one of the words in the memory
array, and the bit pattern stored in this word is transferred to the memory output lines.
Figure 9-20 illustrates one possible internal structure of the 8-word X 4-bit ROM
shown in Figure 9-17. The decoder generates the eight minterms of the three input vari-
ables. The memory array forms the four output functions by ORing together selected
minterms. A switching element is placed at the intersection of a word line and an output
line if the corresponding minterm is to be included in the output function; otherwise,
the switching element is omitted (or not connected). If a switching element connects
an output line to a word line which is 1, the output line will be 1. Otherwise, the pull-
down resistors at the top of Figure 9-20 cause the output line to be 0. So the switching
elements which are connected in this way in the memory array effectively form an
OR gate for each of the output functions. For example, m, m,, m,, and mg are ORed
together to form F,. Figure 9-21 shows the equivalent OR gate.
In general, those minterms which are connected to output line F by switching
elements are ORed together to form the output F;. Thus, the ROM in Figure 9-20
generates the following functions:
F,=32m(0,1,4,6) = A'B' + AC’
F,=3%m(2,3,4,6,7) = B + AC'
F,=3m(0,1,2,6) = A'B’ + BC' (9-5)
F;=%m(2,3,5,6,7) = AC+ B
FIGURE 9-19 —
Basic ROM
Structure .
—> <
n lAnpul { & Decoder | - Memory Array:
Lines : 2" Words X m Bits
—

YY

-
m Output Lines
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ms=AB’C

mg =ABC’

FIGURE 9-20 T T in T
An 8-Word X 4-Bit - = = =
ROM g = ABC
m; =A'B’C > ™ —\%\,
m, = A’BC’ : ~ —\%\,
A —>] my = A'BC \%\ \
3-to-8 ~— Word
B Decoder | m, = AB’C’ / Lines
C—> '\/:

g
944 |44

m;=ABC

Switching // \ /
Element
Fy 1
Output
FIGURE 9-21  m,
Equivalent OR Gate Z:ll@f Fo
for Fy my

Lines

The contents of a ROM are usually specified by a truth table. The truth table of
Figure 9-17(b) specifies the ROM in Figure 9-20. Note that a 1 or 0 in the output part
of the truth table corresponds to the presence or absence of a switching element in the
memory array of the ROM.

Multiple-output combinational circuits can easily be realized using ROMs. As an
example, we will realize a code converter that converts a 4-bit binary number to a
hexadecimal digit and outputs the 7-bit ASCII code. Figure 9-22 shows the truth
table and logic circuit for the converter. Because As = A,, and A4 = A,, the ROM
needs only five outputs. Because there are four address lines, the ROM size is 16
words by 5 bits. Columns A,A3A4,A,A, of the truth table are stored in the ROM.
Figure 9-23 shows an internal diagram of the ROM. The switching elements at the
intersections of the rows and columns of the memory array are indicated using X’s.
An X indicates that the switching element is present and connected, and no X indi-
cates that the corresponding element is absent or not connected.

Three common types of ROMs are mask-programmable ROMs, programmable
ROMs (PROMs), and electrically erasable programmable ROMs (EEPROMs). At
the time of manufacture, the data array is permanently stored in a mask-programma-
ble ROM. This is accomplished by selectively including or omitting the switching ele-
ments at the row-column intersections of the memory array. This requires preparation

94 1444
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\
%
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FIGURE 9-22
Hexadecimal-to-
ASCII Code
Converter

FIGURE 9-23
ROM Realization of
Code Converter
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0001 1 0110001 W=
0010 2 0110010 X— rom 43
0011 3 0110011 e —h
0100 4 0110100 2 A,
0101 5 0110101 Ay
0110 6 0110110
0111 7 0110111
1000 8 0111000
1001 9 0111001
1010 A 10000 0 1
1011 B 1000010
1100 C 10000 11
1101 D 1000100
1110 E 1000101
1111 F 1000110
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ROM Outputs

of a special mask, which is used during fabrication of the integrated circuit.
Preparation of this mask is expensive, so the use of mask-programmable ROMs is
economically feasible only if a large quantity (typically several thousand or more) is
required with the same data array. If a small quantity of ROMs is required with a
given data array, EEPROMs may be used.

Modification of the data stored in a ROM is often necessary during the
developmental phases of a digital system, so EEPROMs are used instead of
mask-programmable ROMs. EEPROMs use a special charge-storage mecha-
nism to enable or disable the switching elements in the memory array. A PROM
programmer is used to provide appropriate voltage pulses to store electronic
charges in the memory array locations. Data stored in this manner is generally
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permanent until erased. After erasure, a new set of data can be stored in the
EEPROM. An EEPROM can be erased and reprogrammed only a limited num-
ber of times, typically 100 to 1000 times. Flash memories are similar to
EEPROMs, except that they use a different charge-storage mechanism. They
usually have built-in programming and erase capability so that data can be writ-
ten to the flash memory while it is in place in a circuit without the need for a
separate programmer.

9.6 Programmable Logic Devices

A programmable logic device (or PLD) is a general name for a digital integrated cir-
cuit capable of being programmed to provide a variety of different logic functions. In
this section we will discuss several types of combinational PLDs, and later we will dis-
cuss sequential PLDs. Simple combinational PLDs are capable of realizing from 2 to
10 functions of 4 to 16 variables with a single integrated circuit. More complex PLDs
may contain thousands of gates and flip-flops. Thus, a single PLD can replace a large
number of integrated circuits, and this leads to lower cost designs. When a digital sys-
tem is designed using a PLD, changes in the design can easily be made by changing
the programming of the PLD without having to change the wiring in the system.

Programmable Logic Arrays

A programmable logic array (PLA) performs the same basic function as a ROM. A
PLA with n inputs and m outputs (Figure 9-24) can realize m functions of n vari-
ables. The internal organization of the PLA is different from that of the ROM. The
decoder is replaced with an AND array which realizes selected product terms of the
input variables. The OR array ORs together the product terms needed to form the
output functions, so a PLA implements a sum-of-products expression, while a ROM
directly implements a truth table.

Figure 9-25 shows a PLA which realizes the same functions as the ROM of Figure
9-20. Product terms are formed in the AND array by connecting switching elements
at appropriate points in the array. For example, to form A’ B’, switching elements are
used to connect the first word line with the A" and B’ lines. Switching elements are

FIGURE 9-24 PLA
Programmable
Logic Array <
—> o
structure nlnput | —> AND - OR
Lines Array Array

—>
k Word l l l
Lines ,, Output Lines
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FIGURE 9-25

PLA with Three
Inputs, Five Product
Terms, and Four
Outputs
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connected in the OR array to select the product terms needed for the output func-
tions. For example, because F, = A'B' + AC’, switching elements are used to con-
nect the A’B’ and AC' lines to the F line. The connections in the AND and OR
arrays of this PLA make it equivalent to the AND-OR array of Figure 9-26.

The contents of a PLA can be specified by a PLA table. Table 9-1 specifies the PLA
in Figure 9-25. The input side of the table specifies the product terms. The symbols 0, I,

FIGURE 9-26 A B o
AND-OR Array
Equ_ivalent to iz i] iz OR Array
Figure 9-25
[\ A
L/
[\ AcC
—L__/
—\ &
L/
[\ BC
L/
[\ Ac
L/ EINEANE

AND Array
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TABLE 9-1 Product Inputs Outputs
PLA Table for Term ABC FoFiF, F5
Figure 9-25 A'B' 00- 1010 Fo=AB +AC
AC 1-0 1100 F=AC+8B
B -1- 0101 F=APB +BC
BC' -10 0010 F=B+AC
AC 1 -1 0001

and — indicate whether a variable is complemented, not complemented, or not present
in the corresponding product term. The output side of the table specifies which prod-
uct terms appear in each output function. A 1 or 0 indicates whether a given product
term is present or not present in the corresponding output function. Thus, the first row
of Table 9-1 indicates that the term A’'B’ is present in output functions F and F,, and
the second row indicates that AC’ is present in F; and F}.

Next, we will realize Equations (7-23) using a PLA. Using the minimum multiple-
output solution given in Equations (7-23b), we can construct a PLA table, Figure 9-27(a),
with one row for each distinct product term. Figure 9-27(b) shows the corresponding
PLA structure, which has four inputs, six product terms, and three outputs. A dot at the
intersection of a word line and an input or output line indicates the presence of a switch-
ing element in the array.

FIGURE 9-27 abcd f, f, f;

PLA Realization of 51 _ 1 110
Equations (7-23b) 11-1 101
100 - 101

-01- 100

--1- 010

-11- 001

(a) PLA table

Inputs

VIVIVY|Y

a’bd
abd

ab’c’
b'c

Word
Lines

F F, F
|
Outputs
(b) PLA structure
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A PLA table is significantly different than a truth table for a ROM. In a truth
table each row represents a minterm; therefore, exactly one row will be selected by
each combination of input values. The 0’s and 1’s of the output portion of the
selected row determine the corresponding output values. On the other hand, each
row in a PLA table represents a general product term. Therefore, zero, one, or
more rows may be selected by each combination of input values. To determine the
value of f; for a given input combination, the values of f; in the selected rows of the
PLA table must be ORed together. The following examples refer to the PLA table
of Figure 9-27(a). If abcd = 0001, no rows are selected, and all f’s are 0. If abcd =
1001, only the third row is selected, and f; f, f; = 101. If abcd = 0111, the first, fifth,
and sixth rows are selected. Therefore, ff=1+0+0=1,,=1+1+0=1,and
3=0+0+1=1.

Both mask-programmable and field-programmable PLAs are available. The
mask-programmable type is programmed at the time of manufacture in a manner
similar to mask-programmable ROMs. The field-programmable logic array
(FPLA) has programmable interconnection points that use electronic charges to
store a pattern in the AND and OR arrays. An FPLA with 16 inputs, 48 product
terms, and eight outputs can be programmed to implement eight functions of 16
variables, provided that the total number of product terms does not exceed 48.

When the number of input variables is small, a PROM may be more economi-
cal to use than a PLA. However, when the number of input variables is large, PLAs
often provide a more economical solution than PROMs. For example, to realize
eight functions of 24 variables would require a PROM with over 16 million 8-bit
words. Because PROMs of this size are not readily available, the functions would
have to be decomposed so that they could be realized using a number of smaller
PROMs. The same eight functions of 24 variables could easily be realized using a
single PLA, provided that the total number of product terms is small. If more terms
are required, the outputs of several PLAs can be ORed together.

Programmable Array Logic

The PAL (programmable array logic) is a special case of the programmable logic
array in which the AND array is programmable and the OR array is fixed. The basic
structure of the PAL is the same as the PLA shown in Figure 9-24. Because only the
AND array is programmable, the PAL is less expensive than the more general PLA,
and the PAL is easier to program. For this reason, logic designers frequently use
PALs to replace individual logic gates when several logic functions must be realized.
Figure 9-28(a) represents a segment of an unprogrammed PAL. The symbol

% Noninverted Output
Inverted Output

represents an input buffer which is logically equivalent to

.
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A buffer is used because each PAL input must drive many AND gate inputs. When
the PAL is programmed, some of the interconnection points are programmed to
make the desired connections to the AND gate inputs. Connections to the AND
gate inputs in a PAL are represented by X’s as shown:

A_ —
B— ABC E ABC
C_

As an example, we will use the PAL segment of Figure 9-28(a) to realize the
function 1,15 + I11,. The X’s in Figure 9-28(b) indicate that /; and /; lines are con-
nected to the first AND gate, and the /] and I, lines are connected to the other gate.

When designing with PALSs, we must simplify our logic equations and try to fit
them into one (or more) of the available PALs. Unlike the more general PLA, the
AND terms cannot be shared among two or more OR gates; therefore, each func-
tion to be realized can be simplified by itself without regard to common terms. For
a given type of PAL, the number of AND terms that feed each output OR gate is
fixed and limited. If the number of AND terms in a simplified function is too large,
we may be forced to choose a PAL with more gate inputs and fewer outputs.

FIGURE 9-28 |
PAL Segment 1 4[} .
"1

Output

Fg

(a) Unprogrammed

1

M

L+,

(b) Programmed
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As an example of programming a PAL, we will implement a full adder. The
logic equations for the full adder are

Sum = X'Y'Cy, + X'YCl, + XY'Cl, + XYC,,
Cout = XCin + YCin + XY

Figure 9-29 shows a section of a PAL where each OR gate is driven by four AND
gates. The X’s on the diagram show the connections that are programmed into the
PAL to implement the full adder equations. For example, the first row of X’s
implements the product term X'Y'C;,.

FIGURE 9-29 |
Implementation of X [:2
a Full Adder Using y_| «?
a PAL

Sum

out

9.7 Complex Programmable Logic Devices

As integrated circuit technology continues to improve, more and more gates can be
placed on a single chip. This has allowed the development of complex programma-
ble logic devices (CPLDs). Instead of a single PAL or PLA on a chip, many PALs
or PLAs can be placed on a single CPLD chip and interconnected. When storage
elements such as flip-flops are also included on the same IC, a small digital system
can be implemented with a single CPLD.

Figure 9-30 shows the basic architecture of a Xilinx XCR3064XL CPLD. This
CPLD has four function blocks, and each block has 16 associated macrocells (MC1,
MC2, .. .). Each function block is a programmable AND-OR array that is configured
as a PLA. Each macrocell contains a flip-flop and multiplexers that route signals from
the function block to the input-output (I/O) block or to the interconnect array (IA).
The TA selects signals from the macrocell outputs or I/O blocks and connects them
back to function block inputs. Thus, a signal generated in one function block can be
used as an input to any other function block. The I/O blocks provide an interface
between the bi-directional I/O pins on the IC and the interior of the CPLD.

Figure 9-31 shows how a signal generated in the PLA is routed to an I/O pin
through a macrocell. Any of the 36 outputs from the IA (or their complements) can
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FIGURE 9-30 Architecture of Xilinx XCR3064XL CPLD (Figure based on figures and text owned by Xilinx, Inc.,
Courtesy of Xilinx, Inc. © Xilinx, Inc. 1999-2003. All rights reserved.)

~<—> < MCl1 MCI1 > <>
<> 1o [FMC2 | FuncTioN 36 36 FUNCTION [ MC2 |~ | <>
: : BLOCK | "1 BLOCK : > :
- <~ Mcie MC16 |—> <>
2] | 16 16 |
= -
Q 7 > Interconnect g
— 0 rray O -
<> MC1 /?;x)‘ MC1 —> <>
<> o e ] runcTion | 36 36 | FUNCTION [ MC2 |—>- o <
: > : BLOCK BLOCK : > :
- MCI16 MC16 —> <>
T 16 16 T
16 16

be connected to any inputs of the 48 AND gates. Each OR gate can accept up to 48
product term inputs from the AND array. The macrocell logic in this diagram is a sim-
plified version of the actual logic. The first MUX (1) can be programmed to select the
OR-gate output or its complement. Details of the flip-flop operation will be discussed
in Unit 11. The MUX (2) at the output of the macrocell can be programmed to select
either the combinational output (G) or the flip-flop output (Q). This output goes to
the interconnect array and to the output cell. The output cell includes a three-state
buffer (3) to drive the I/O pin. The buffer enable input can be programmed from sev-
eral sources. When the I/O pin is used as an input, the buffer must be disabled.
Sophisticated CAD software is available for fitting logic circuits into a PLD and
for programming the interconnections within the PLD. The input to this software
can be in several forms such as a logic circuit diagram, a set of logic equations, or
code written in a hardware description language (HDL). Unit 10 discusses the use
of an HDL. The CAD software processes the input, determines the logic equations
to be implemented, fits these equations into the PLD, determines the required inter-
connections within the PLD, and generates a bit pattern for programming the PLD.

FIGURE 9-31 36 Inputs From TA

CPLD Function —
Block and N
Macrocell 48 AND Gates
(A Simplified /
Programmable

Version of One of 16 OR Gates
] e Selec
XCR3064XL) D— / elect ToTIA TOT IA
' >0

I/O Pin
Programmable
\ Enable
Flip-Flop
Part of PLA Simplified Macrocell Output Cell
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9.8 Field-Programmable Gate Arrays

In this section we introduce the use of field-programmable gate arrays (FPGAs) in
combinational logic design. An FPGA is an IC that contains an array of identical
logic cells with programmable interconnections. The user can program the functions
realized by each logic cell and the connections between the cells. Figure 9-32 shows
the layout of part of a typical FPGA. The interior of the FPGA consists of an array
of logic cells, also called configurable logic blocks (CLBs). The array of CLBs is sur-
rounded by a ring of input-output interface blocks. These 1/0 blocks connect the
CLB signals to IC pins. The space between the CLBs is used to route connections
between the CLB outputs and inputs.

Figure 9-33 shows a simplified version of a CLB. This CLB contains two function
generators, two flip-flops, and various multiplexers for routing signals within the CLB.
Each function generator has four inputs and can implement any function of up to four
variables. The function generators are implemented as lookup tables (LUTs). A four-
input LUT is essentially a reprogrammable ROM with 16 1-bit words. This ROM
stores the truth table for the function being generated. The H multiplexer selects
either F or G depending on the value of H,.The CLB has two combinational outputs

FIGURE 9-32 | | | | | | | |

Layout of a Typical | || | | || | | || | | || |
FPGA |:| [T 111 [ 111 flll [T [ 111

Configurable Logic Block I/0 Block
| N |

— ~<— Interconnect Area —————>
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(X and Y') and two flip-flop outputs (XQ and YQ).The X and Y outputs and the flip-
flop inputs are selected by programmable multiplexers. The select inputs to these
MUXes are programmed when the FPGA is configured. For example, the X output
can come from the F function generator, and the Y output from the H multiplexer.
Operation of the CLB flip-flops will be described in Unit 11.

Figure 9-34 shows one way to implement a function generator with inputs a, b, ¢, d.
The numbers in the squares represent the bits stored in the LUT. These bits enable
particular minterms. Because the function being implemented is stored as a truth table,
a function with only one minterm or with as many as 15 minterms requires a single
function generator. The functions

F = abc
and
F=a'b'c’d+ ab'cd+ a'bc’'d+ a'bed’ + ab'c’d + ab'cd’ + abc'd’ + abcd

each require a single function generator.

;
a’—
bl—
o —
d'—

mu—
b —
¢ —
d—

Decomposition of Switching Functions

In order to implement a switching function of more than four variables using 4-
variable function generators, the function must be decomposed into subfunctions
where each subfunction requires only four variables. One method of decomposition
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is based on Shannon’s expansion theorem. We will first illustrate this theorem by
expanding a function of the variables a, b, ¢, and d about the variable a:

fla,b,c,d) =d'f(0,b,c,d) +af(l,b,c,d)=a' fy +af (9-6)

The 3-variable function f, = f(0, b, ¢, d) is formed by replacing a with 0 in f(a, b, ¢, d),
and f; = f(1, b, ¢, d) is formed by replacing a with 1 in f(a, b, ¢, d). To verify that
Equation (9-6) is correct, first set a to 0 on both sides, and then set a to 1 on both sides.
An example of applying Equation (9-6) is as follows:

fla,b,c,d) =c'd +a'b'c + bed + ac' (9-7)
=a'(c’d + b'c+ bed) + a(c'd + bed + ¢')
=a'(c’'d +b'c+ecd)+alc +bd)=a fy+af

Note that before simplification, the terms c¢’'d’ and bcd appear in both f, and f;
because neither term contains a’ or a.

Expansion can also be accomplished using a truth table or a Karnaugh map.
Figure 9-35 shows the map for Equation (9-7). The left half of the map where a = 0 is
in effect a 3-variable map for f(b, ¢, d). Looping terms on the left half gives f, = ¢’d" +
b'c + cd, which is the same as the previous result. Similarly the right half where a = 1
is a 3-variable map for f;(b, ¢, d), and looping terms on the right half gives f; = ¢’ + bd.
The expressions for f; and f; obtained from the map are the same as those obtained
algebraically in Equation (9-7).

The general form of Shannon’s expansion theorem for expanding an n-variable
function about the variable x; is

FO X oo o X1, Xy X s e - e 5 Xy)
=x fOo, X0 oo X, 00 X0y oo o5 X)X X, X X, L Xy e X))
=x'fot xifi (9-8)
where fj is the (n—1)-variable function obtained by setting x; to 0 in the original

function and f; is the (n—1)-variable function obtained by setting x; to 1 in the orig-
inal function. The theorem is easily proved for switching algebra by first setting x;

FIGURE 9-35 a=0 |
Function Expansion ab ab |
Using a Karnaugh e\ _%0 01 1T 10 cd\_ 00 01 |

Map 00 (1 1 (1 q 00|(1 1)1 q
01 1 1 01 CD 1)

|

10
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to 0 in Equation (9-8), and, then, setting x; to 1. Because both sides of the equation
are equal for x; = 0 and for x; = 1, the theorem is true for switching algebra.
Applying the expansion theorem to a 5-variable function gives

f(a’b9c7d’e) = a/f(oib’c’d’e) + af(l’b’c’d’e) = a,fo + aﬁ (9-9)

This shows that any 5-variable function can be realized using two 4-variable
function generators and a 2-to-1 MUX [Figure 9-36(a)]. This implies that any
5-variable function can be implemented using a CLB of the type shown in
Figure 9-33.

To realize a 6-variable function using 4-variable function generators, we apply
the expansion theorem twice:

G(a,b,c,d,e,f)=a G(0,b,c,d,e,f) +a G(l,b,c,d,e,f)=a Gy+ a G,
G,=0b'G(0,0,c,d,e,f) + b G(0,1,c,d,e,f) =b' Gy, + b Gy
G, =b'G(1,0,¢c,d,e,f) + b G(1,1,c,d,e,f) =b'Gyy + bGy,

Because Gy, Gy, Gy, and Gy are all 4-variable functions, we can realize any 6-variable
function using four 4-variable function generators and three 2-to-1 MUXes, as shown
in Figure 9-36(b). Thus, we can realize any 6-variable function using two CLBs of the
type shown in Figure 9-31. Alternatively, we can write

G(a,b,c,d,e,f) = a'b'Gyy + a'b Gy, + ab'Gyy + ab Gy, (9-10)

and realize G using four function generators and a 4-to-1 MUX. In general, we can
realize any n-variable function (n>4) using 2" * 4-variable function generators
and one 2" *to-1 MUX. This is a worst-case situation because many functions of
n variables can be realized with fewer function generators.

FIGURE 9-36 o —] ]
Realization of d— rg G
. o |
5- and 6-Variable r—] G
Functions with ' , 0
Function f’, ] F, i/:
FG FG
Generators d— o | Gor
e — f— b
F G
bh— c —] .
{I: FG ({: FG 10
. Fi a % a
e — f—
¢ — G,
d— g
T Gy
S b
(a) 5-variable function (b) 6-variable function
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Problems

9.1 (a) Show how two 2-to-1 multiplexers (with no added gates) could be connected to

form a 3-to-1 MUX. Input selection should be as follows:
If AB = 00, select I,
If AB = 01, select [,
If AB = 1- (B is a don’t-care), select 1,

(b) Show how two 4-to-1 and one 2-to-1 multiplexers could be connected to form an
8-to-1 MUX with three control inputs.

(¢) Show how four 2-to-1 and one 4-to-1 multiplexers could be connected to form an
8-to-1 MUX with three control inputs.

9.2 Design a circuit which will either subtract X from Y or Y from X, depending on the
value of A. If A = 1, the output should be X — Y, and if A = 0, the output should be
Y — X. Use a 4-bit subtracter and two 4-bit 2-to-1 multiplexers (with bus inputs and
outputs as in Figure 9-5).

9.3 Repeat 9.2 using a 4-bit subtracter, four 4-bit three-state buffers (with bus inputs
and outputs), and one inverter.

9.4 Realize a full adder using a 3-to-8 line decoder (as in Figure 9-13) and
(a) two OR gates.
(b) two NOR gates.

9.5 Derive the logic equations for a 4-to-2 priority encoder. Refer to your table in the
Study Guide, Part 4(b).

9.6 Design a circuit equivalent to Figure 9-11 using a 4-to-1 MUX (with bus inputs
as in Figure 9-5). Use a 4-to-2 line priority encoder to generate the control
signals.

9.7 An adder for Gray-coded-decimal digits (see Table 1-2) is to be designed using a
ROM. The adder should add two Gray-coded digits and give the Gray-coded sum
and a carry. For example, 1011 + 1010 = 0010 with a carry of 1 (7 + 6 = 13).
Draw a block diagram showing the required ROM inputs and outputs. What size
ROM is required? Indicate how the truth table for the ROM would be specified
by giving some typical rows.

9.8 The following PLA will be used to implement the following equations:
X=AB'D+A'C' + BC+C'D’
Y=A'C'+AC+ C'D’
Z=CD+A'C'+ AB'D
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(a) Indicate the connections that will be made to program the PLA to implement
these equations.

A B C D

VIV V|V

X Y Z

(b) Specify the truth table for a ROM which realizes these same equations.
9.9 Show how to implement a full subtracter using a PAL. See Figure 9-29.

9.10 (a) If the ROM in the hexadecimal to ASCII code converter of Figure 9-22 is
replaced with a PAL, give the internal connection diagram.
(b) If the same ROM is replaced with a PLA, give the PLA table.

9.11 (a) Sometimes the programmable MUX (1) in Figure 9-31 helps us to save
AND gates. Consider the case in which F = ¢'d’ + bc’ + a’c. If programmable
MUX (1) is not set to invert F (i.e., G = F),how many AND gates are needed?
If the MUX is set to invert F (i.e., G = F’), how many AND gates are needed?
(b) Repeat (a) for F=a'b’ + c'd'.

9.12 (a) Implement a 3-variable function generator using a PAL with inputs a, b, ¢, and 1
(use the input inverter to get 0 also). Give the internal connection diagram.
Leave the connections to 0 and 1 disconnected, so that any 3-variable function
can be implemented by connecting only 0 and 1.
(b) Now connect 0 and 1 so that the function generator implements the sum func-
tion for a full adder. See Figure 9-34.

9.13 Expand the following function about the variable b.
F=ab'cde’ + bc'd'e + a’cd’e + ac'de’

9.14 (a) Implement the following function using only 2-to-1 MUXes:
R=ab'h' + bch’ + eg'h + fgh.
(b) Repeat using only tri-state buffers.
9.15 Show how to make a 4-to-1 MUX, using an 8-to-1 MUX.
9.16 Implement a 32-to-1 multiplexer using two 16-to-1 multiplexers and a 2-to-1

multiplexer in two ways: (a) Connect the most significant select line to the 2-to-1
multiplexer, and (b) connect the least significant select line to the 2-to-1 multiplexer.
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9.17 2-to-1 multiplexers with an active high output and active high enable are to be used
in the following implementations:

(a) Show how to implement a 4-to-1 multiplexer with an active high output and
no enable using two of the 2-to-1 MUXes and a minimum number of addi-
tional gates.

(b) Repeat part (a) for a 4-to-1 multiplexer with an active low output.

(c) Repeat part (b) assuming the output of the 2-to-1 MUX is 1 (rather than 0)
when the enable is 0.

9.18 Realize a BCD to excess-3 code converter using a 4-to-10 decoder with active low
outputs and a minimum number of gates.

9.19 Use a 4-to-1 multiplexer and a minimum number of external gates to realize the
function F(w, x, y, z) = 2 m(3,4,5,7,10,14) + = d(1, 6, 15).
The inputs are only available uncomplemented.

9.20 Realize the function f(a, b, ¢, d, ¢) = 2 m(6,7,9,11,12,13,16,17,18, 20, 21,23, 25, 28)
using a 16-to-1 MUX with control inputs b, ¢, d, and e. Each data input should be 0, 1,
a, or a’. Hint: Start with a minterm expansion of F and combine minterms to elimi-
nate a and a’ where possible.

9.21 Implement a full adder

(a) using two 8-to-1 MUXes. Connect X, Y, and C;, to the control inputs of the
MUXes and connect 1 or 0 to each data input.

(b) using two 4-to-1 MUXes and one inverter. Connect X and Y to the control
inputs of the MUXes, and connect 1’s, 0’s, Cy,, or C;; to each data input.

(c) again using two 4-to-1 MUXes, but this time connect C;, and Y to the control
inputs of the MUXes, and connect 1’s, 0’s, X, or X’ to each data input. Note
that in this fashion, any N-variable logic function may be implemented using a
20V"D-t0-1 MUX.

9.22 Repeat Problem 9.21 for a full subtracter, except use B;, instead of Cj,.

9.23 Make a circuit which gives the absolute value of a 4-bit binary number. Use four
full adders, four multiplexers, and four inverters. Assume negative numbers are
represented in 2’s complement. Recall that one way to find the 2’s complement of
a binary number is to invert all of the bits and then add 1.

9.24 Show how to make a 4-to-1 MUX using four three-state buffers and a decoder.

9.25 Show how to make an 8-to-1 MUX using two 4-to-1 MUXes, two three-state buffers,
and one inverter.

9.26 Realize a full subtracter using a 3-to-8 line decoder with inverting outputs and

(a) two NAND gates.
(b) two AND gates.
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9.27 Show how to make the 8-to-3 priority encoder of Figure 9-16 using two 4-to-2 pri-
ority encoders and any additional necessary gates.

9.28 Design an adder for excess-3 decimal digits (see Table 1-2) using a ROM. Add two
excess-3 digits and give the excess-3 sum and a carry. For example, 1010 + 1001 =
0110 with a carry of 1 (7 + 6 = 13). Draw a block diagram showing the required ROM
inputs and outputs. What size ROM is required? Indicate how the truth table for the
ROM would be specified by giving some typical rows.

9.29 A circuit has four inputs RSTU and four outputs VWYZ. RSTU represents a binary-
coded-decimal digit. VW represents the quotient and YZ the remainder when RSTU
is divided by 3 (VW and YZ represent 2-bit binary numbers). Assume that invalid
inputs do not occur. Realize the circuit using
(a) a ROM.

(b) a minimum two-level NAND-gate circuit.
(c) a PLA (specify the PLA table).

9.30 Repeat Problem 9.29 if the inputs RSTU represent a decimal digit in Gray code
(see Table 1-2).

9.31 (a) Find a minimum two-level NOR gate circuit to realize F; and F,. Use as many
common gates as possible.
Fi(a,b,c,d) =3 m(1,2,4,5,6,8,10,12,14)
F,(a,b,c,d) =3 m(2,4,6,8,10,11,12,14,15)
(b) Realize F, and F, using a PLA. Give the PLA table and internal connection dia-
gram for the PLA.

9.32 Braille is a system which allows a blind person to read alphanumerics by feeling a
pattern of raised dots. Design a circuit that converts BCD to Braille. The table shows
the correspondence between BCD and Braille.

(a) Use a multiple-output NAND-gate circuit.

w X
V4 Y

SO == OO0 QO |

—_—_— 000000 QO |n

CORP R OO~ OOI|IN

_O O OO = O T
.e
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(b) Use a PLA. Give the PLA table.
(c) Specity the connection pattern for the PLA.

9.33 (a) Implement your solution to Problem 7.10 using a PLA. Specify the PLA table
and draw the internal connection diagram for the PLA using dots to indicate
the presence of switching elements.

(b) Repeat (a) for Problem 7.41.
(c) Repeat (a) for Problem 7.43.

9.34 Show how to make an 8-to-1 MUX using a PAL. Assume that PAL has 14 inputs
and six outputs and assume that each output OR gate may have up to four AND
terms as inputs, as in Figure 9-29. (Hint: Wire some outputs of the PAL around to
the inputs, external to the PAL. Some PALs allow this inside the PAL to save
inputs.)

9.35 Work Problem 9.34 but make the 8-to-3 priority encoder of Figure 9-16 instead of a
MUX.

9.36 The function F = CD'E + CDE + A'D'E + A'B' DE' + BCD is to be implemented
in an FPGA which uses 3-variable lookup tables.

(a) Expand F about the variables A and B

(b) Expand F about the variables B and C.

(c) Expand F about the variables A and C.

(d) Any 5-variable function can be implemented using four 3-variable lookup
tables and a 4-to-1 MUX, but this time we are lucky. Use your preceding
answers to implement F using only three 3-variable lookup tables and a 4-to-1
MUX. Give the truth tables for the lookup tables.

9.37 Work Problem 9.36 for F = B'D'E’ + AB'C + C'DE" + A'BC'D.

9.38 Implement a 4-to-1 MUX using a CLB of the type shown in Figure 9-33. Specify the
function realized by each function generator.

9.39 Realize the function (A, B,C, D) = A'C' + A'B'D' + ACD + A'BD.

(a) Use a single 8-to-1 multiplexer with an active low enable and an active high out-
put. Use A, C,and D as the select inputs where A is the most significant and D
is the least significant.

(b) Repeat Part (a) assuming the multiplexer enable is active high and output is
active low.

(c) Use a single 4-to-1 multiplexer with an active low enable and an active high out-
put and a minimum of additional gates. Show the function expansion both alge-
braically and on a Karnaugh map.

9.40 Repeat Problem 9.39 for the function
fl(A,B,C,D,E)=A'C'E' + A'B'D'E' + ACDE' + A'BDE'.
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9.41 F(a,b,c,d) =a' +ac'd + b'cd + ad.
(a) Using Shannon’s expansion theorem, expand F about the variable d.
(b) Use the expansion in Part (a) to realize the function using two 4-variable LUTs
and a 2-to-1 MUX. Specify the LUT inputs.
(c) Give the truth table for each LUT.

9.42 Repeat 9.41 for F(a, b, ¢, d) = cd' + ad' + a'b'cd + bc'.

9.43 Repeat 9.41 for F(a, b, ¢, d) = bd + bc' + ac'd + a'd’.
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Introduction to VHDL

Objectives

1. Represent gates and combinational logic by concurrent VHDL statements.

2. Given a set of concurrent VHDL statements, draw the corresponding
combinational logic circuit.

3. Write a VHDL module for a combinational circuit
(a) by using concurrent VHDL statements to represent logic equations.
(b) by interconnecting VHDL components.

4. Compile and simulate a VHDL module.
Use the basic VHDL operators and understand their order of precedence.

6. Use the VHDL types: bit, bit_vector, Boolean, and integer.
Define and use an array-type.

7. Use IEEE Standard Logic. Use std_logic_vectors, together with overloaded
operators, to perform arithmetic operations.

280
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Study Guide

1. Study Section 10.1, VHDL Description of Combinational Circuits.

(a) Draw a circuit that corresponds to the following VHDL statements:
C<=not A D <= CandB;

(b) If A changes at time 5 ns, at what time do each of the following concurrent
statements execute? At what times are C and D updated?
C<=A
D<=A
(c) Write a VHDL statement that corresponds to the following circuit. The invert-
er has a delay of 5 ns. Draw the waveform for M assuming that M is initially 0.

> f

0 5 10 15 20 25 t(ns)

(d) Write a VHDL statement to implement A = B @ C without using the xor
or xnor operator. Do not include gate delays.

(e) Work Problems 10.1 and 10.2.

2. Study Section 10.2, VHDL Models for Multiplexers.

(a) Implement the following VHDL conditional assignment statement, using a
2-to-1 MUX:
F <= Awhen C = "1" else B;

(b) Write a VHDL conditional assignment statement that represents the 4-to-1
MUX of Figure 9-2. Assume I, = 1,1, = 0,and I, = I; = C.

(c) Write a VHDL selected signal assignment for the same circuit as in (b).

3. Study Section 10.3, VHDL Modules, and Section 10.4, Signals and Constants.
(a) Write an entity for the module MOD1. A, B, C, D, and E are all of type bit.

A—> VHDL
B —> Module §
c— | Mopl [>F

—>D
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(b) Write the architecture for MOD1 if D = ABC and E = D'.

(c) What changes must be made in the code of Figure 10-12 to implement a
5-bit adder?

(d) Given the concurrent VHDL statements
R <= A after 5 ns; -- statement 1
S <= R after 10 ns; -- statement 2
If A changes at time 3 ns, at what time will statement 1 be executed?
At what time will R be updated?
At what time will statement 2 be executed?
At what time will S be updated?
Answers: 3 ns, 8 ns, 8 ns, and 18 ns

(e) Write a statement that defines a bit_vector constant C1 equal to 10101011.

(f) The circuit of Figure 8-5 is implemented as a module without gate delays
as follows.
(In the figure, B is set to 1 and C'is set to 0, but here, assume they are inputs.)
entity fig8_5 is
port (A, B, C: in bit; G2: out bit);

end fig8_5;
architecture circuit of fig8_5 is
begin

G2 <= not(C or (A and B));
end circuit;

Each gate in Figure 8-5 has a delay of 20 ns. Modify the module to include
gate delays. (Hint: You will need a signal declaration to introduce G1 as an
internal signal.)
(g) Work Problems 10.3 and 10.4.
4. Study Section 10.5, Arrays.

(a) Write VHDL statements that define a ROM that is 16 words of 8 bits each.
Leave the values stored in the ROM unspecified.

(b) Work Problem 10.5.
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Study Section 10.6, VHD L Operators.

(a) For each of the following statements, eliminate one set of parentheses with-
out changing the order of operation.
(i) not ((A & B) xor “10")
(i) (not (A & B) xor “10")
(b) IfA(0Oto7)="11011011", what will be the result of executing the follow-
ing concurrent statement?
B <= A(6 to 7)&A(0 to 5);
What problem will occur when the following concurrent statement is
executed?
A <= A(6 to 7)&A(0 to 5);
(Hint: A concurrent statement executes every time the right-hand side
changes.)
(c) Work Problem 10.6(a).

Study Section 10.7, Packages and Libraries.

Give the entity and architecture that describes a three-input AND gate with 2-ns
delay. Assume that all signals are of type bit.

Study Section 10.8, IEEE Standard Logic.

(a) Suppose A, B, C,D, E, and F are of type std_logic. If the following concur-
rent statements are executed, what are the values of A, B, C, D, E, and F?
A<="1" A<="7,;
B<="0; B<=A
C<="0,
D <= Awhen C =0 else ‘7,
D<=CwhenC="1"else'Z’;
E<='0"whenA ="1"else C;
E<=Awhen C="0" else 1
F<="1"whenA="1"and C="1"else'Z;
F<='0"whenA ="'0"and C =0 else 'Z’;
(b) Given the concurrent statements
F<="0"
F <="1"after 2 ns;
What will happen if F is of type bit? What if F is of type std_logic?

(c) Suppose in Figure 10-19 that A is 1011, B is 0111, and Cin is 1. What is
Addout? Sum? Cout?
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(d) If Ais a 6-bit std_logic_vector and B is a 4-bit std_logic_vector, write con-
current VHDL statements that will add A and B to result in a 6-bit sum
and a carry.

(e) Draw a circuit that implements the following VHDL code:
signal A, B, C, D: std_logic_vector(1 to 3);
signal E, F, G: std_logic;

D <= AwhenE ="1"else “777";
D <=BwhenF ="1" else “777";
D <= Cwhen G = 1" else "777";

(f) Work Problems 10.6(b), 10.7, and 10.8.

8. Before you take the test on Unit 10, pick up a lab assignment sheet and work
the assigned lab problems. Turn in your VHDL code and simulation results.

Introduction to VHDL

As integrated circuit technology has improved to allow more and more compo-
nents on a chip, digital systems have continued to grow in complexity. As digital
systems have become more complex, detailed design of the systems at the gate
and flip-flop level has become very tedious and time consuming. For this reason,
the use of hardware description languages in the digital design process contin-
ues to grow in importance. A hardware description language allows a digital
system to be designed and debugged at a higher level before implementation at
the gate and flip-flop level. The use of computer-aided design tools to do this
conversion is becoming more widespread. This is analogous to writing software
programs in a high-level language such as C and then using a compiler to con-
vert the programs to machine language. The two most popular hardware
description languages are VHDL and Verilog.
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VHDL is a hardware description language that is used to describe the behav-
ior and structure of digital systems. The acronym VHDL stands for VHSIC
Hardware Description Language, and VHSIC in turn stands for Very High Speed
Integrated Circuit. However, VHDL is a general-purpose hardware description
language which can be used to describe and simulate the operation of a wide
variety of digital systems, ranging in complexity from a few gates to an intercon-
nection of many complex integrated circuits. VHDL was originally developed to
allow a uniform method for specifying digital systems. The VHDL language
became an IEEE standard in 1987, and it is widely used in industry. IEEE pub-
lished a revised VHDL standard in 1993, and the examples in this text conform
to that standard.

VHDL can describe a digital system at several different levels—behavioral,
data flow, and structural. For example, a binary adder could be described at the
behavioral level in terms of its function of adding two binary numbers, without
giving any implementation details. The same adder could be described at the data
flow level by giving the logic equations for the adder. Finally, the adder could be
described at the structural level by specifying the interconnections of the gates
which make up the adder.

VHDL leads naturally to a top-down design methodology in which the system
is first specified at a high level and tested using a simulator. After the system
is debugged at this level, the design can gradually be refined, eventually leading
to a structural description which is closely related to the actual hardware
implementation. VHDL was designed to be technology independent. If a
design is described in VHDL and implemented in today’s technology, the same
VHDL description could be used as a starting point for a design in some future
technology.

In this chapter, we introduce VHDL and illustrate how we can describe sim-
ple combinational circuits using VHDL. We will use VHDL in later units to
design sequential circuits and more complex digital systems. In Unit 17, we intro-
duce the use of CAD software tools for automatic synthesis from VHDL descrip-
tions. These synthesis tools will derive a hardware implementation from the
VHDL code.

10.1 VHDL Description of Combinational
Circuits

We begin by describing a simple gate circuit using VHDL. A VHDL signal is
used to describe a signal in a physical system. (Section 10.4 contains a summary of
signals, constants, and types. The VHDL language also includes variables similar
to variables in programming languages, but to obtain synthesizable code for hard-
ware, signals should be used to represent hardware signals. VHDL variables
are not used in this text.) The gate circuit of Figure 10-1 has five signals: A, B, C,D
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FlGURE_ 10'_1 A— C C <= A and B after 5 ns;
Gate Circuit B —] 5 E E <= C or D after 5 ns;

and E. The symbol “<="is the signal assignment operator which indicates that
the value computed on the right-hand side is assigned to the signal on the left side.
A behavioral description of the circuit in Figure 10-1 is

E<=Dor (A andB);

Parentheses are used to specify the order of operator execution.

The two assignment statements in Figure 10-1 give a dataflow description of the
circuit where it is assumed that each gate has a 5-ns propagation delay. When the
statements in Figure 10-1 are simulated, the first statement will be evaluated any time
A or B changes, and the second statement will be evaluated any time C or D changes.
Suppose that initially A = 1,and B = C =D = E = 0. If B changes to 1 at time 0, C
will change to 1 at time = 5 ns. Then, E will change to 1 at time = 10 ns.

The circuit of Figure 10-1 can also be described using structural VHDL code.
To do so requires that a two-input AND-gate component and a two-input OR-
gate component be declared and defined. Components may be declared and
defined either in a library or within the architecture part of the VHDL code.
(VHDL architectures are discussed in Section 10.3, and packages and libraries are
discussed in Section 10.7.) Instantiation statements are used to specify how com-
ponents are connected. Each copy of a component requires a separate instantia-
tion statement to specify how it is connected to other components and to the port
inputs and outputs. An instantiation statement is a concurrent statement that exe-
cutes anytime one of the input signals in its port map changes. The circuit of Figure
10-1 is described by instantiating the AND gate and the OR gate as follows:

Gate1: AND2 port map (A, B, D);
Gate2: OR2 port map (C, D, E);

The port map for Gatel connects A and B to the AND-gate inputs, and it connects D
to the AND-gate output. Since an instantiation statement is concurrent, whenever A
or B changes, these changes go to the Gatel inputs,and then the component computes
a new value of D. Similarly, the second statement passes changes in C or D to the
Gate?2 inputs, and then the component computes a new value of E. This is exactly how
the real hardware works. (The order in which the instantiation statements appear is
irrelevant.) Instantiating a component is different than calling a function in a com-
puter program. A function returns a new value whenever it is called, but an instanti-
ated component computes a new output value whenever its input changes.

VHDL signal assignment statements, such as the ones in Figure 10-1, are exam-
ples of concurrent statements. The VHDL simulator monitors the right side of each
concurrent statement, and any time a signal changes, the expression on the right side
is immediately re-evaluated. The new value is assigned to the signal on the left side
after an appropriate delay. This is exactly the way the hardware works. Any time a
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gate input changes, the gate output is recomputed by the hardware, and the output
changes after the gate delay.

When we initially describe a circuit, we may not be concerned about propaga-
tion delays. If we write

C<=AandB;
E<=CorD;

this implies that the propagation delays are O ns. In this case, the simulator will
assume an infinitesimal delay referred to as A (delta). Assume that initially A = 1
and B=C =D =E = 0.If B is changed to 1 at time = 1 ns, then C will change at
time 1 + A and E will change at time 1 + 2A.

Unlike a sequential program, the order of the above concurrent statements is
unimportant. If we write

E<=CorD;
C<=AandB;

the simulation results would be exactly the same as before.
In general, a signal assignment statement has the form

signal_name <= expression [after delay];

The expression is evaluated when the statement is executed, and the signal on the
left side is scheduled to change after delay. The square brackets indicate that after
delay is optional; they are not part of the statement. If after delay is omitted, then
the signal is scheduled to be updated after a delta delay. Note that the time at
which the statement executes and the time at which the signal is updated are not
the same.

Even if a VHDL program has no explicit loops, concurrent statements may exe-
cute repeatedly as if they were in a loop. Figure 10-2 shows an inverter with the
output connected back to the input. If the output is ‘0’, then this ‘0’ feeds back to
the input and the inverter output changes to ‘1’ after the inverter delay, assumed to
be 10 ns. Then, the ‘1’ feeds back to the input, and the output changes to ‘0’ after the
inverter delay. The signal CLK will continue to oscillate between ‘0’ and ‘1°, as shown
in the waveform. The corresponding concurrent VHDL statement will produce the
same result. If CLK is initialized to ‘0’, the statement executes and CLK changes to
‘17 after 10 ns. Because CLK has changed, the statement executes again, and CLK
will change back to ‘0’ after another 10 ns. This process will continue indefinitely.

FIGURE 10-2 CLK
Inverter with {>°
Feedback

CLK | CLK <= not CLK after 10 ns;

10 20 30 40 50 60
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The statement in Figure 10-2 generates a clock waveform with a half period of
10 ns. On the other hand, the concurrent statement

CLK <= not CLK;

will cause a run-time error during simulation. Because there is 0 delay, the value of
CLK will change at times 0 + A, 0 + 2A, 0 + 3A, etc. Because A is an infinitesimal
time, time will never advance to 1 ns.

In general, VHDL is not case sensitive, that is, capital and lower case letters are
treated the same by the compiler and the simulator. Thus, the statements

Clk <= NOT clk After 10 NS;
and CLK <= not CLK after 10 ns;

would be treated exactly the same. Signal names and other VHDL identifiers may
contain letters, numbers, and the underscore character (_). An identifier must start
with a letter, and it cannot end with an underscore. Thus, C123 and ab_23 are legal
identifiers, but 1ABC and ABC_ are not. Every VHDL statement must be termi-
nated with a semicolon. Spaces, tabs, and carriage returns are treated in the same
way. This means that a VHDL statement can be continued over several lines, or
several statements can be placed on one line. In a line of VHDL code, anything
following a double dash (--) is treated as a comment. Words such as and, or, and
after are reserved words (or keywords) which have a special meaning to the
VHDL compiler. In this text, we will put all reserved words in boldface type.

Figure 10-3 shows three gates that have the signal A as a common input and the cor-
responding VHDL code. The three concurrent statements execute simultaneously when-
ever A changes,just as the three gates start processing the signal change at the same time.
However, if the gates have different delays, the gate outputs can change at different
times. If the gates have delays of 2 ns, 1 ns, and 3 ns, respectively, and A changes at time
5 ns, then the gate outputs D, E, and F can change at times 7 ns, 6 ns, and 8 ns, respec-
tively. The VHDL statements work in the same way. Even though the statements execute
simultaneously, the signals D, E, and F are updated at times 7 ns, 6 ns, and 8 ns. However,
if no delays were specified, then D, E, and F would all be updated at time 5 + A.

In these examples, every signal is of type bit, which means it can have a value of
‘0’ or ‘1”. (Bit values in VHDL are enclosed in single quotes to distinguish them from
integer values.) In digital design, we often need to perform the same operation on a
group of signals. A one-dimensional array of bit signals is referred to as a bit-vector.
If a 4-bit vector named B has an index range 0 through 3, then the four elements of
the bit-vector are designated B(0), B(1), B(2), and B(3). The statement B <= “0110"
assigns ‘0’ to B(0), 1’ to B(1), 1’ to B(2), and ‘0’ to B(3).

FIGURE 10-3 B—]
Three Gates with a D -- when A changes, these concurrent

Common Input and -- statements all execute at the same time
Different Delays A E D <= A and B after 2 ns;

E <= not A after 1 ns;

F <= A or C after 3 ns;
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FIGURE 10-4 A(3) — ca
Array of AND B(3) — ) -- the hard way
Gates C(3) <= A(3) and B(3);
A(2) — cQ) C(2) <= A(2) and B(2);
B(2) — o C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);
A(l) — )
C(1)
B(1) —
-- the easy way
A0) _} C<=AandB;
C(0)
B(0) —

Figure 10-4 shows an array of four AND gates. The inputs are represented by
bit-vectors A and B, and the outputs by bit-vector C. Although we can write four
VHDL statements to represent the four gates, it is much more efficient to write a
single VHDL statement that performs the and operation on the bit-vectors A and
B. When applied to bit-vectors, the and operator performs the and operation on
corresponding pairs of elements.

The preceding signal assignment statements containing “after delay” create
what is called an inertial delay model. Consider a device with an inertial delay of
D time units. If an input change to the device will cause its output to change, then
the output changes D time units later. However, this is not what happens if the
device receives two input changes within a period of D time units and both input
changes should cause the output to change. In this case the device output does not
change in response to either input change. As an example, consider the signal
assignment

C <= A and B after 10 ns;

Assume A and B are initially 1, and A changes to 0 at 15 ns, to 1 at 30 ns, and to 0 at
35ns. Then C changes to 1 at 10 ns and to 0 at 25 ns, but C does not change in
response to the A changes at 30 ns and 35 ns because these two changes occurred
less than 10 ns apart. A device with an inertial delay of D time units filters out out-
put changes that would occur in less than or equal to D time units.

VHDL can also model devices with an ideal (transport) delay. Output changes
caused by input changes to a device exhibiting an ideal (transport) delay of D time
units are delayed by D time units, and the output changes occur even if they occur
within D time units. The VHDL signal assignment statement that models ideal
(transport) delay is

signal_name <= transport expression after delay
As an example, consider the signal assignment
C <= transport A and B after 10 ns;

Assume A and B are initially 1 and A changes to 0 at 15 ns, to 1 at 30 ns, and to O at
35 ns. Then C changes to 1 at 10 ns, to 0 at 25 ns, to 1 at 40 ns, and to 0 at 45 ns. Note
that the last two changes are separated by just 5 ns.
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10.2 VHDL Models for Multiplexers

Figure 10-5 shows a 2-to-1 multiplexer (MUX) with two data inputs and one control
input. The MUX outputis F = A’-10 + A-I1.The corresponding VHDL statement is

F <= (not A and 10) or (A and I1);

Alternatively, we can represent the MUX by a conditional signal assignment state-
ment, as shown in Figure 10-5. This statement executes whenever A, 10, or I1
changes. The MUX output is I0 when A = ‘0’, and else it is I1. In the conditional
statement, 10, I1, and F can either be bits or bit-vectors.

FIGURE 10-5
10

2-to-1 Multiplexer F -- conditional signal assignment statement
11 F <=10 when A ="0"else I1;

A

The general form of a conditional signal assignment statement is

signal_name <= expression1 when condition1
else expression2 when condition2
[else expressionN];

This concurrent statement is executed whenever a change occurs in a signal used in
one of the expressions or conditions. If conditionl is true, signal_name is set equal
to the value of expressionl, or else if condition?2 is true, signal_name is set equal to
the value of expression2, etc. The line in square brackets is optional. Figure 10-6
shows how two cascaded MUXes can be represented by a conditional signal assign-
ment statement. The output MUX selects A when E = “1’; or else it selects the out-
put of the first MUX, which is B when D = ‘1’, or else it is C.

FIGURE 10-6
Cascaded 2-to-1 C
MUXes B F

F <= AwhenE ="1"
else BwhenD ="1'
else C;

E

Figure 10-7 shows a 4-to-1 MUX with four data inputs and two control inputs, A
and B. The control inputs select which one of the data inputs is transmitted to the
output. The logic equation for the 4-to-1 MUX is

F = A'B'l, + A'BI, + AB'T, + ABJ;
Thus, one way to model the MUX is with the VHDL statement

F <= (not A and not B and 10) or (not A and B and I1) or
(A and not B and 12) or (A and B and 13);
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FIGURE 10-7

4-to-1 Multiplexer ! sel <= A&B;

-- selected signal assignment statement
F with sel select

L, F <= 10 when "00",

I, 11 when "01",

12 when "10",

A B 13 when "11";

Another way to model the 4-to-1 MUX is to use a conditional assignment statement:

F <= 10 when A&B = “00"
else 11 when A&B = “01"
else 12 when A&B = "10"
else 13;

The expression A&B means A concatenated with B, that is, the two bits A and B
are merged together to form a 2-bit vector. This bit vector is tested, and the appro-
priate MUX input is selected. For example, if A = ‘1’ and B = ‘0’, A&B = “10”
and 12 is selected. Instead of concatenating A and B, we could use a more complex
condition:

F<=10whenA ="'0"and B =0’
else 1 whenA ='0"and B = "1’
else 2 whenA ="1"and B =0’
else I3;

A third way to model the MUX is to use a selected signal assignment state-
ment, as shown in Figure 10-7. A&B cannot be used in this type of statement, so
we first set Sel equal to A&B. The value of Sel then selects the MUX input that is
assigned to F.

The general form of a selected signal assignment statement is

with expression_s select
signal_s <= expression1 [after delay-time] when choicel,
expression2 [after delay-time] when choice2,

[expression_n [after delay-time] when others];

This concurrent statement executes whenever a signal changes in any of the
expressions. First, expression_s is evaluated. If it equals choicel, signal_s is set
equal to expressionl;if it equals choice2, signal_s is set equal to expression2; etc. If
all possible choices for the value of expression_s are given, the last line should be
omitted; otherwise, the last line is required. When it is present, if expression_s is not
equal to any of the enumerated choices, signal_s is set equal to expression_n. The
signal_s is updated after the specified delay-time, or after A if the “after delay-
time” is omitted.
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10.3 VHDL Modules

To write a complete VHDL module, we must declare all of the input and output
signals using an entity declaration, and then specify the internal operation of the
module using an architecture declaration. As an example, consider Figure 10-8. The
entity declaration gives the name “two_gates” to the module. The port declaration
specifies the inputs and outputs to the module. A, B, and D are input signals of type
bit, and E is an output signal of type bit. The architecture is named “gates”. The
signal C is declared within the architecture because it is an internal signal. The two
concurrent statements that describe the gates are placed between the keywords
begin and end.

FIGURE 10-8 entity two_gates is
VHDL Module with port (A,B,D: in bit; E: out bit);
Two Gates end two_gates;

architecture gates of two_gates is
B —j E signal C: bit;
begin

C <= A and B; -- concurrent

E <= C or D; -- statements
end gates;

When we describe a system in VHDL, we must specify an entity and an
architecture at the top level, and also specify an entity and architecture for each of
the component modules that are part of the system (see Figure 10-9). Each entity
declaration includes a list of interface signals that can be used to connect to other
modules or to the outside world. We will use entity declarations of the form:

entity entity-name is
[port(interface-signal-declaration);]
end [entity] [entity-name];

The items enclosed in square brackets are optional. The interface-signal-declaration
normally has the following form:

list-of-interface-signals: mode type [: = initial-value]
{; list-of-interface-signals: mode type [: = initial-value]};

FIGURE 10-9
VHDL Program
Structure

Entity
Architecture

Entity Entity Entity
Architecture | | Architecture Architecture

Module 1 Module 2 Module N
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The curly brackets indicate zero or more repetitions of the enclosed clause. Input
signals are of mode in, output signals are of mode out, and bi-directional signals (see
Figure 9-12) are of mode inout.

So far, we have only used type bit and bit_vector; other types are described in
Section 10.4. The optional initial-value is used to initialize the signals on the associ-
ated list; otherwise, the default initial value is used for the specified type. For exam-
ple, the port declaration

port(A, B: in integer : = 2; C, D: out bit);

indicates that A and B are input signals of type integer that are initially set to 2, and
C and D are output signals of type bit that are initialized by default to ‘0’.

Associated with each entity is one or more architecture declarations of the
form

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

In the declarations section, we can declare signals and components that are used
within the architecture. The architecture body contains statements that describe the
operation of the module.

Next, we will write the entity and architecture for a full adder module (refer
to Section 4.7 for a description of a full adder). The entity specifies the inputs and
outputs of the adder module, as shown in Figure 10-10. The port declaration spec-
ifies that X, Y and Cin are input signals of type bit, and that Cout and Sum are
output signals of type bit.

FIGURE 10-10 - -
. . X —> entity FullAdder is
Entity Declaration . Full > Cou port (X,Y,Cin: in bit; - Inputs
for a Full Adder ] | Adder | > sum Cout, Sum: out bit); -- Outputs
Module  Cin —> end FullAdder;

The operation of the full adder is specified by an architecture declaration:

architecture Equations of FullAdder is
begin -- concurrent assignment statements

Sum <= X xor Y xor Cin after 10 ns;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
end Equations;

In this example, the architecture name (Equations) is arbitrary, but the entity name
(FullAdder) must match the name used in the associated entity declaration.
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The VHDL assignment statements for Sum and Cout represent the logic equations
for the full adder. Several other architectural descriptions such as a truth table or an
interconnection of gates could have been used instead. In the Cout equation, paren-
theses are required around (X and Y) because VHDL does not specify an order of
precedence for the logic operators.

Four-Bit Full Adder

Next, we will show how to use the FullAdder module defined above as a compo-
nent in a system which consists of four full adders connected to form a 4-bit bina-
ry adder (see Figure 10-11). We first declare the 4-bit adder as an entity (see
Figure 10-12). Because the inputs and the sum output are four bits wide, we
declare them as bit_vectors which are dimensioned 3 downto 0. (We could have
used a range 1 to 4 instead.)

FIGURE 10-11 S3 S5 S So
4-Bit Binary Adder T T T T

C C, C
~ Full 3 Full 2 Full 1 Full ~
C < < < < <« C
N Adder Adder Adder Adder !

N

A3 B3 Al B, Ap By A() By

Next, we specify the FullAdder as a component within the architecture of
Adder4 (Figure 10-12). The component specification is very similar to the entity
declaration for the full adder, and the input and output port signals correspond to
those declared for the full adder. Following the component statement, we declare a
3-bit internal carry signal C.

In the body of the architecture, we create several instances of the FullAdder
component. (In CAD jargon, we instantiate four copies of the FullAdder.) Each
copy of FullAdder has a name (such as FAQ) and a port map. The signal names fol-
lowing the port map correspond one-to-one with the signals in the component port.
Thus, A(0), B(0), and Ci correspond to the inputs X, Y, and Cin, respectively. C(1)
and S(0) correspond to the Cout and Sum outputs. Note that the order of the sig-
nals in the port map must be the same as the order of the signals in the port of the
component declaration.

In preparation for simulation, we can place the entity and architecture for the
FullAdder and for Adder4 together in one file and compile. Alternatively, we could
compile the FullAdder separately and place the resulting code in a library which is
linked in when we compile Adder4.

All of the simulation examples in this text use the ModelSim simulator from
Model Tech. Most other VHDL simulators use similar command files and can
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FIGURE 10-12
Structural entity Adder4 is
Description of port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
4-Bit Adder S: out bit_vector(3 downto 0); Co: out bit); -- Outputs

end Adder4;

architecture Structure of Adder4 is

component FullAdder
port (X, Y, Cin: in bit; -- Inputs

Cout, Sum: out bit); -- Outputs

end component;

signal C: bit_vector(3 downto 1);

begin -- instantiate four copies of the FuIIAdder
FAO: FullAdder port map (A(0), B(0), Ci, C(1), S(0));
FA1: FullAdder port map (A(1), B(1), ( ), C(2), S(1));
FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));
FA3: FullAdder port map (A(3), B(3), C(3), Co, S(3));

end Structure;

’

’

produce output in a similar format. We will use the following simulator com-
mands to test Adder4:

add listABCoCCiS -- put these signals on the output list
force A 1111 -- set the A inputs to 1111

force B 0001 -- set the B inputs to 0001

force Ci 1 —-setCito1

run 50 ns -- run the simulation for 50 ns

force Ci 0

force A 0101

force B 1110

run 50 ns

We have chosen to run the simulation for 50 ns because this is more than enough
time for the carry to propagate through all of the full adders. The simulation results
for the above command list are:

ns delta a b co C ci s
0 +0 0000 0000 0 000 0 0000
0 +1 1111 0001 0 000 1 0000

10 +0 1111 0001 0 001 1 111

20 +0 1111 0001 0 011 1 1101

30 +0 1111 0001 0 111 1 1001

40 +0 1111 0001 1 111 1 0001

50 +0 0101 1110 1 111 0 0001

60 +0 0101 1110 1 110 0 0101

70 +0 0101 1110 1 100 0 0111

80 +0 0101 1110 1 100 0 0011
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The listing shows how the carry propagates one position every 10 ns. The full
adder inputs change at time = A:

Time = A

)
() <— FA3 [«— FA2 |<— FAl [«— FAO |[<—1

Time = 10

Time = 20

() <— FA3 |<— FA2 [«— FAl |<— FA0 [<—

The final simulation results are:

1111 + 0001 + 1 = 0001 with a carry of 1 (at time = 40 ns) and
0101 + 1110 + 0 = 0011 with a carry of 1 (at time = 80 ns).

The simulation stops at 80 ns because no further changes occur after that time. For
more details on how the simulator handles A delays, refer to Section 10.9.

In this section we have shown how to construct a VHDL module using an entity-
architecture pair. The 4-bit adder module demonstrates the use of VHDL components
to write structural VHDL code. Components used within the architecture are declared
at the beginning of the architecture, using a component declaration of the form

component component-name
port (list-of-interface-signals-and-their-types);
end component;
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The port clause used in the component declaration has the same form as the port
clause used in an entity declaration. The connections to each component used in a
circuit are specified by using a component instantiation statement of the form

label: component-name port map (list-of-actual-signals);

The list of actual signals must correspond one-to-one to the list of interface signals
specified in the component declaration.

10.4 Signals and Constants

Input and output signals for a module are declared in a port. Signals internal to a
module are declared at the start of an architecture, before begin, and can be used
only within that architecture. Port signals have an associated mode (usually in or
out), but internal signals do not. A signal used within an architecture must be
declared either in a port or in the declaration section of an architecture, but it can-
not be declared in both places. A signal declaration has the form

signal list_of_signal_names: type_name [constraint] [:= initial_value];

The constraint can be an index range like (0 to 5) or (4 downto 1), or it can be a
range of values such as range 0 to 7. Examples:

signal A, B, C: bit_vector(3 downto 0):= “1111";
A, B, and C are 4-bit vectors dimensioned 3 downto 0 and initialized to 1111.
signal E, F: integer range 0 to 15;

E and F are integers in the range 0 to 15, initialized by default to 0. The compiler or
simulator will flag an error if we attempt to assign a value outside the specified range
toEorF

Constants declared at the start of an architecture can be used anywhere within
that architecture. A constant declaration is similar to a signal declaration:

constant constant_name: type_name [constraint] [:= constant_value];

A constant named limit of type integer with a value of 17 can be defined as
constant limit : integer := 17;

A constant named delayl of type time with the value of 5 ns can be defined as
constant delay1 : time := 5 ns;

This constant could then be used in an assignment statement
A <= B after delay1;

Once the value of a constant is defined in a declaration statement, unlike a signal,
the value cannot be changed by using an assignment statement.

Signals and constants can have any one of the predefined VHDL types, or they
can have a user-defined type. Some of the predefined types are
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bit ‘0 or ‘1’
boolean FALSE or TRUE
integer an integer in the range —(2°!' —1) to + (2°' —1)
(some implementations support a wider range)
positive an integer in the range 1 to 2*' —1 (positive integers)
natural an integer in the range 0 to 2*' —1 (positive integers and zero)
real floating-point number in the range —1.0E38 to + 1.0E38

character any legal VHDL character including upper- and lower case letters,
digits, and special characters; each printable character must be
enclosed in single quotes, e.g.,‘d’, 7", ‘+’

time an integer with units fs, ps, ns, us, ms, sec, min, or hr

Note that the integer range for VHDL is symmetrical even though the range for a
32-bit 2’s complement integer is —2°! to + (2°'—1).

A common user-defined type is the enumeration type in which all of the values
are enumerated. For example, the declarations

type state_type is (S0, S1, S2, S3, 54, S5);
signal state : state_type := S1;

define a signal called state which can have any one of the values S0, S1, S2, S3, S4, or
S5 and which is initialized to S1. If no initialization is given, the default initialization
is the left most element in the enumeration list, SO in this example. If we declare the
signal state as shown, the following assignment statement sets state to S3:

state <= S3;

VHDL is a strongly-typed language so signals of different types generally cannot be
mixed in the same assignment statement, and no automatic type conversion is per-
formed. Thus the statement A <= B or C is only valid if A, B, and C all have the same
type or closely related types.

Arrays

In order to use an array in VHDL, we must first declare an array type, and then
declare an array object. For example, the following declaration defines a one-dimen-
sional array type named SHORT_WORD:

type SHORT_WORD is array (15 downto 0) of bit;

An array of this type has an integer index with a range from 15 downto 0, and each
element of the array is of type bit.
Next, we will declare array objects of type SHORT_WORD:

signal DATA_WORD: SHORT_WORD;
signal ALT_WORD: SHORT_WORD := “0101010101010101";
constant ONE_WORD: SHORT_WORD := (others => '1");
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DATA_WORD is a signal array of 16 bits, indexed 15 downto 0, which is ini-
tialized (by default) to all ‘0’ bits. ALT_WORD is a signal array of 16 bits which is
initialized to alternating 0’s and 1’'s. ONE_WORD is a constant array of 16 bits; all
bits are set to ‘1’ by (others => ‘1’). Because none of the bits have been set indi-
vidually,' in this case others applies to all of the bits.

We can reference individual elements of the array by specifying an index value.
For example, ALT_WORD(0) accesses the far right bit of ALT_WORD. We can also
specify a portion of the array by specifying an index range: ALT_WORD(5 downto 0)
accesses the low order six bits of ALT_WORD, which have an initial value of 010101.

The array type and array object declarations illustrated above have the general
forms:

type array_type_name is array index_range of element_type;
signal array_name: array_type_name [ := initial_values ];

In this declaration, signal may be replaced with constant.

Multidimensional array types may also be defined with two or more dimensions.
The following example defines a two-dimensional array signal which is a matrix of
integers with four rows and three columns:

type matrix4x3 is array (1 to 4, 1 to 3) of integer;
signal matrixA: matrix4x3 := ((1,2,3),(4,5,6),(7,8,9),(10,11,12));

The signal matrixA, will be initialized to

1 2 3
4 5 6
7 8 9
10 11 12

The array element matrixA(3,2) references the element in the third row and second col-
umn, which has a value of 8. The statement B <= matrixA(2,3) assigns a value of 6 to B.

When an array type is declared, the dimensions of the array may be left unde-
fined. This is referred to as an unconstrained array type. For example,

type intvec is array (natural range <>) of integer;

declares intvec as an array type which defines a one-dimensional array of integers with
an unconstrained index range of natural numbers. The default type for array indices is
integer, but another type may be specified. Because the index range is not specified in
the unconstrained array type, the range must be specified when the array object is
declared. For example,

signal intvec5: intvec(1 to 5) := (3,2,6,8,1);

defines a signal array named intvec5 with an index range of 1 to 5, which is initial-
ized to 3,2, 6, §, 1. The following declaration defines matrix as a two-dimensional
array with unconstrained row and column index ranges:

type matrix is array (natural range <>, natural range <>) of integer;

!See Reference [1, p. 86] for information on how to set individual bits.
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Predefined unconstrained array types in VHDL include bit_vector and string, which
are defined as follows:

type bit_vector is array (natural range <>) of bit;
type string is array (positive range <>) of character;

The characters in a string literal must be enclosed in double quotes. For exam-
ple, “This is a string.” is a string literal. The following example declares a constant
string1 of type string:

constant string1: string(1 to 29) := "“This string is 29 characters.”

A bit_vector literal may be written either as a list of bits separated by commas
or as a string. For example, (‘1°,°0’,1°,1°,‘0") and “10110” are equivalent forms. The
following declares a constant A which is a bit_vector with a range 0 to 5.

constant A : bit_vector(0 to 5) := “101011";

A truth table can be implemented using a ROM (read-only memory) as illustrated
in Figure 9-17. If we represent the ROM outputs by a bit_vector, F(0 to 3), we can rep-
resent the truth table that is stored in the ROM by an array of bit_vectors. The VHDL
code for this ROM is given in Figure 10-13. The port declaration (line 4) defines the
inputs and outputs for the ROM. The type declaration (line 7) defines an array with
8 rows where each row is 4 bits wide. Line 8 declares ROM1 to be an array of this type
with binary data stored in each row. Line 9 declares an integer called index. This index
will be used to select one of the 8 rows in the ROM1 array. In line 11, this index is
formed by concatenating the three input bits to form a 3-bit vector, and this vector is
converted to an integer. The data is read from the ROM1 array in line 13. For example,
if A=1,B=0,and C = ‘1’,index = 5, and “0001” is read from the ROM. Lines 1
and 2 allow us to use the vec2int function, which is defined in a library named BITLIB.

FIGURE 10-13 VHDL Description of a ROM

1 library BITLIB;

2 use BITLIB.bit_pack.all;

3 entity ROM9_17 is

4 port (A, B, C: in bit; F: out bit_vector(0 to 3));

5 end entity;

6  architecture ROM of ROM9_17 is

7  type ROMS8X4 is array (0 to 7) of bit_vector(0 to 3);

8  constant ROM1: ROM8X4 := (“1010", “1010", "0111", "0101", “1100", "0001", “1111", "0101");
9  signal index: Integer range 0 to 7;

10 begin

11 index <= vec2int(A&B&C);  -- A&B&C Is a 3-bit vector

12 -- vec2int is a function that converts this vector to an integer
13 F <= ROMT1 (index);

14 -- this statement reads the output from the ROM

15 end ROM;
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10.6 VHDL Operators

Predefined VHDL operators can be grouped into seven classes:

binary logical operators: and or nand nor xor xnor
relational operators: = /= < <= > >=

shift operators: sll srl sla sra rol ror

adding operators: + — & (concatenation)

unary sign operators: + —

multiplying operators: * / mod rem

miscellaneous operators: not abs **

Nk e

When parentheses are not used, operators in class 7 have highest precedence and are
applied first, followed by class 6, then class 5, etc. Class 1 operators have lowest prece-
dence and are applied last. Operators in the same class have the same precedence and
are applied from left to right in an expression. The precedence order can be changed
by using parentheses. In the following expression, A, B, C, and D are bit_vectors:

not A or B and not C & D

In this expression, not is performed first, then & (concatenation), then or, and final-
ly and. The equivalent expression using parentheses is

((not A) or B) and ((not C) &D)

The binary logical operators (class 1) as well as not can be applied to bits, booleans,
bit_vectors, and boolean_vectors. The class 1 operators require two operands of the
same type and size, and the result is of that type and size.

Relational operators (class 2) are used to compare two expressions and return a
value of FALSE or TRUE. The two expressions must be of the same type and size. Equal
(=) and not equal (/=) apply to any type, but the application of the other relational
operators is more restricted. Note that “="1is always a relational operator, but “<=""also
serves as an assignment operator. Example: If A = 5, B = 4, and C = 3 the expression

(A >=B) and (B <= () evaluates to FALSE.

Figure 10-14 shows a comparator for two integers with a restricted range. C must
be of type Boolean since the condition A <= B evaluates to TRUE or FALSE. If
we implement the comparator in hardware, each integer would be represented by a
4-bit signal because the range is restricted to 0 to 15. C, D, and E would each be one
bit (0 for FALSE or 1 for TRUE).

FIGURE 10-14 <= > C signal A,B: integer range 0 to 15;
Comparator for signal C, D, E: Boolean;
Integers 5
Comparator =|—>D C<=A<=B;
B —> D<=A=B;
>—>E E<=A>B;
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The shift operators are used to shift or rotate a bit_vector. In the following
examples, A is an 8- bit vector equal to “10010101”:

Asll 2 is “01010100” (shift left logical, filled with ‘0”)

Asrl3  is“00010010” (shift right logical, filled with 0”)

Asla3  is “10101111” (shift left arithmetic, filled with rightmost bit)
Asra2  is“11100101” (shift right arithmetic, filled with leftmost bit)
Arol3  is“10101100” (rotate left)

Aror5  is “10101100” (rotate right)

We will not utilize these shift operators because some software used for synthesis
uses different shift operators. Instead, we will do shifting using the concatenation
operator. For example, if A in the above listing is dimensioned 7 downto 0, we can
implement shift right arithmetic two places as follows:

A(7)&A(7)&A(7 downto 2) = '1'&"1°&"100101" = “11100101"

This makes two copies of the sign bit followed by the left 6 bits of A, which gives the
same result as A sra 2.

The + and — operators can be applied to integer or real numeric operands. The
& operator can be used to concatenate two vectors (or an element and a vector, or
two elements) to form a longer vector. For example, “010” & ‘17 is “0101” and
“ABC” & “DEF” is “ABCDEFE.”

The * and / operators perform multiplication and division on integer or float-
ing-point operands. The rem and mod operators calculate the remainder and mod-
ulus for integer operands. (We will not use rem and mod; for further discussion of
these operators see Reference [1].) The ** operator raises an integer or floating-
point number to an integer power, and abs finds the absolute value of a numeric
operand.

10.7 Packages and Libraries

Packages and libraries provide a convenient way of referencing frequently used
functions and components. A package consists of a package declaration and an
optional package body. The package declaration contains a set of declarations
which may be shared by several design units. For example, it may contain type, sig-
nal, component, function, and procedure declarations. The package body usually
contains component descriptions and the function and procedure bodies. The pack-
age and its associated compiled VHDL models may be placed in a library, so they
can be accessed as required by different VHDL designs. A package declaration has
the form:

package package-name is
package declarations
end [package][package-name];
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A package body has the form

package body package-name is
package body declarations

end [package body][package name];

We have developed a package called bit_pack which is used in a number of exam-
ples in this book. This package contains commonly used components and functions
which use signals of type bit and bit_vector. A complete listing of this package and
associated component models is included on the CD-ROM that accompanies this
text. Most of the components in this package have a default delay of 10 ns, but this
delay can be changed by the use of generics. For an explanation of generics, refer to
one of the VHDL references. We have compiled this package and the component
models and placed the result in a library called BITLIB.

One of the components in the library is a two-input NOR gate named Nor2,
which has default delay of 10 ns. The package declaration for bit_pack includes the
component declaration

component Nor2
port (A1, A2: in bit; Z: out bit);
end component;

The NOR gate is modeled using a concurrent statement. The entity-architecture
pair for this component is

-- two-input NOR gate
entity Nor2 is

port (A1, A2: in bit; Z: out bit);
end Nor2;
architecture concur of Nor2 is
begin

Z <= not(A1 or A2) after 10 ns;
end concur;

To access components and functions within a package requires a library state-
ment and a use statement. The statement

library BITLIB;

allows your design to access the BITLIB. The statement
use BITLIB.bit_pack.all;

allows your design to use the entire bit_pack package. A statement of the form
use BITLIB.bit_pack.Nor2;

may be used if you want to use a specific component (in this case Nor2) or function
in the package.

When components from a library package are used, component declarations are
not needed. Figure 10-15 shows a NOR-NOR circuit and the corresponding struc-
tural VHDL code. This code instantiates three copies of the Nor2 gate component
from the package bit_pack and connects the gate inputs and outputs.
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FIGURE 10'1_5 library BITLIB;
NOR-NOR Circuit use BITLIB.bit_pack.all;
and Structural entity nor_nor is
VHDL Code port (A,B,C,D: in bit; G: out bit);
Using Library end nor_nor, .
Components architecture structural of nor_nor is

signal E,F,BN,CN: bit; -- internal signals
begin

BN <= not B; CN <= not C;

G1: Nor2 port map (A, BN, E);

G2: Nor2 port map (CN, D, F);

G3: Nor2 port map (E, F, G);
end structural;

10.8 IEEE Standard Logic

Use of two-valued logic (bits and bit vectors) is generally not adequate for simulation
of digital systems. In addition to ‘0’ and ‘1’, values of ‘Z’ (high-impedance or no con-
nection) and ‘X’ (unknown) are frequently used in digital system simulation. The IEEE
Standard 1164 defines a std_logic type that actually has nine values (‘U’,‘X’,‘0,‘1°,Z’,
‘W, L, ‘H’, and ‘-’). We will only be concerned with the first five values in this text. ‘U’
stands for uninitialized. When a logic circuit is first turned on and before it is reset, the
signals will be uninitialized. If these signals are represented by std_logic, they will have
a value of ‘U’ until they are changed. Just as a group of bits is represented by a bit_vec-
tor, a group of std_logic signals is represented by a std_logic_vector.

Figure 10-16 shows how a tri-state buffer can be represented by a concurrent
statement. When the buffer is enabled (B = ‘1’), the output is A, or else it is high
impedance (‘Z’). A and C could be std_logic_vectors instead of std_logic bits.

FIGURE 10-16 B

Tri-State Buffer signal A,B,C: std_logic;
A C C <= Awhen B ="'1"else 'Z}

Figure 10-17 shows two tri-state buffers with their outputs connected together
by a tri-state bus. If buffer 1 has an output of ‘1’ and buffer 2 has a hi-Z output, the
bus value is ‘1’. When both buffers are enabled, if buffer 1 drives ‘0’ onto the bus and
buffer 2 drives ‘1’ onto the bus, the result is a bus conflict. In this case, the bus value
is unknown, which we represent by an ‘X’.

In the VHDL code, A, C,and F are std_logic_vectors and F represents the tri-state
bus. The signal F is driven from two different sources. If the two concurrent statements

FIGURE 10-17 B
Tri-State Buffers
Driving a Bus A

signal A,C,F: std_logic_vector(3 downto 0);
signal B,D: std_logic;

D F
-- concurrent statements
F <= Awhen B ="1"'else "ZZZZ";
C F <= C when D ="1"else "ZZZZ";
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assign different values to F, VHDL automatically calls a resolution function to deter-
mine the resulting value. This is similar to the way the hardware works—if the two
buffers have different output values, the hardware resolves the values and comes up
with an appropriate value on the bus. VHDL uses the table of Figure 10-18 to resolve
the bus value when two different std_logic signals, S1 and S2, drive the bus. (Only
signal values ‘U’, ‘X, ‘0’, ‘1’, and ‘Z’ are considered here.) This table is similar to
Figure 9-10, which is used for four-valued logic simulation, except for the addition of
a row and a column corresponding to ‘U’. When an uninitialized signal is connected
to any other signal, VHDL considers that the result is uninitialized.

FIGURE 10-18 S2
Resolution Function ¢
for Two Signals

N - O X C

ccccc|c
X X X X C|X
oxoxXxcl|o
==X XC|=
N-oOXC|N

If A, B, and F are bits (or bit_vectors) and we write the concurrent statements
F<=A F<=notB;

the compiler will flag an error because no resolution function exists for signals of
type bit. If A, B, and F are std_logic bits or vectors, the compiler will generate a call
to the resolution function and not report an error. If F is assigned conflicting values
during simulation, then F will be set to ‘X’ (unknown).

In order to use signals of type std_logic and std_logic_vector in a VHDL mod-
ule, the following declarations must be placed before the entity declaration:

library ieee;
use ieee.std_logic_1164.all;

The IEEE std_logic_1164 package defines std_logic and related types, logic opera-
tions on these types, and functions for working with these types.

The original IEEE standards for VHDL do not define arithmetic operations on
bit_vectors or on std_logic vectors. Based on these standards, we cannot add, sub-
tract, multiply, or divide bit_vectors or std_logic_vectors without first converting
them to other types. For example, if A and B are bit_vectors, the expression A + B
is not allowed. However, VHDL libraries and packages are available that define
arithmetic and comparison operations on std_logic_vectors. The operators defined
in these packages are referred to as overloaded operators. This means that the com-
piler will automatically use the proper definition of the operator depending on
its context. For example, when evaluating the expression A + B, if A and B are inte-
gers, the compiler will use the integer arithmetic routine to do the addition. On the
other hand, if A and B are of type std_logic_vector, the compiler will use the addi-
tion routine for standard logic vectors. In order to use overloaded operators, the
appropriate library and use statements must be included in the VHDL code so that
the compiler can locate the definitions of these operators.

In this text, we will use the std_logic_unsigned package, originally developed by
Synopsis and now widely available. This package treats std_logic_vectors as
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unsigned numbers. The std_logic_unsigned package defines arithmetic operators
(+, —, *) and comparison operators (<, <=, =, /=, >, >=) that operate on
std_logic_vectors. For + , — , and comparison operators, if the two operands are of
different length, the shorter operand is filled on the left end with zeros.

These operations can also be applied when the left operand is a std_logic_vec-
tor and the right operand is an integer. The arithmetic operations return a
std_logic_vector, and the comparison operations return a Boolean. For example, if
A is“100117, A + 7 returns a value of “11010”,and A >= 5 returns TRUE. In these
examples, + and >= are overloaded operators, and the compiler automatically calls
the appropriate routine to add an integer to a std_logic_vector or to compare an
integer with a std_logic_vector.

If A and B are 4-bit std_logic vectors, A + B gives their sum as a 4-bit vector, and
any carry is lost. If the carry is needed, then A must be extended to five-bits before
addition. This is accomplished by concatenating a ‘0’ in front of A. Then ‘0’ &A + B
gives a 5-bit sum that can be split into a carry and a 4-bit sum.

Figure 10-19 shows a binary adder and its VHDL representation using the
std_logic_unsigned package. Addout is a 5-bit sum that is split into Sum and Cout.
For example, if A = “10117, B = “1001”, and Cin = ‘1’, Addout evaluates to
“101017, which is then split into a sum “0101” with a carry out of ‘1’.

Figure 10-20 shows how to implement the bi-directional input-output pin and
tri-state buffer of Figure 9-12 using IEEE std_logic. The I/O pin declared in the port

FIGURE 10-19 library |IEEE;

VHDL Code for Sum use [EEE.std_logic_1164.all;
Binary Adder T use |IEEE.std_logic_unsigned.all;

signal A,B,Sum: std_logic_vector(3 downto 0);
signal Addout: std_logic_vector(4 downto 0);
signal Cin,Cout: std_logic;

Cout <«—{ 4-Bit Adder [<«— Cin

bt

Addout <="'0'&A + B + Cin;

A 5 Sum <= Addout(3 downto 0);
Cout <= Addout(4);
FIGURE 10-20
VHDL Code for entity IC_pin is
Bi-Directional port(l0_pin: inout std_logic);
/O Pin end entity;

architecture bi_dir of IC_pin is
component IC
port(input: in std_logic; output: out std_logic);
end component;
signal input, output, en: std_logic;

begin -- connections to bi-directional 1/0 pin
[0_pin <= output when en = '1" else 'Z’;
input <= 10_pin;
IC1: IC port map (input, output);

end bi_dir;
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is of mode inout. The concurrent statements in the architecture connect the IC out-
put to the pin via a tri-state buffer and also connect the pin to the IC input.

10.9 Compilation and Simulation of VHDL Code

After describing a digital system in VHDL, simulation of the VHDL code is impor-
tant for two reasons. First, we need to verify the VHDL code correctly implements
the intended design, and second, we need to verify that the design meets its specifi-
cations. Before the VHDL model of a digital system can be simulated, the VHDL
code must first be compiled (see Figure 10-21). The VHDL compiler, also called an
analyzer, first checks the VHDL source code to see that it conforms to the syntax
and semantic rules of VHDL. If there is a syntax error such as a missing semicolon
or a semantic error such as trying to add two signals of incompatible types, the com-
piler will output an error message. The compiler also checks to see that references
to libraries are correct. If the VHDL code conforms to all of the rules, the compiler
generates intermediate code which can be used by a simulator or by a synthesizer.

In preparation for simulation, the VHDL intermediate code must be converted to
a form which can be used by the simulator. This step is referred to as elaboration.
During elaboration, ports are created for each instance of a component, memory stor-
age is allocated for the required signals, the interconnections among the port signals
are specified, and a mechanism is established for executing the VHDL statements in
the proper sequence. The resulting data structure represents the digital system being
simulated. After an initialization phase, the simulator enters the execution phase. The
simulator accepts simulation commands which control the simulation of the digital
system and specify the desired simulator output.

Understanding the role of the delta (A) time delays is important when interpreting
output from a VHDL simulator. Although the delta delays do not show up on wave-
form outputs from the simulator, they show up on listing outputs. The simulator uses
delta delays to make sure that signals are processed in the proper sequence. Basically,
the simulator works as follows: Whenever a component input changes, the output is
scheduled to change after the specified delay or after A if no delay is specified. When all
input changes have been processed, the simulated time is advanced to the next time at
which an output change is specified. When time is advanced by a finite amount (1 ns for
example), the A counter is reset, and simulation resumes. Real time does not advance
again until all A delays associated with the current simulation time have been processed.

FIGURE 10-21 VHDL il
Compilation, Libraries imu flto,r,
i i Commands
Simulation, and l
Synthesis of VHDL Intermediate l
Code Code . ator
VHDL ] Compiler >| Simulator Simulator

Code

Output

»{ Synthesizer > Implementer —>-{ Hardware
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The following example illustrates how the simulator works for the circuit of
Figure 10-22. Suppose that A changes at time = 3 ns. Statement 1 executes, and B is
scheduled to change at time 3 + A.Then time advances to 3 + A, and statement 2 exe-
cutes. Cis scheduled to change at time 3 + 2A.Time advances to 3 + 2A, and statement
3 executes. D is then scheduled to change at 8 ns. You may think the change should
occur at (3 + 2A + 5) ns. However, when time advances a finite amount (as opposed
to A, which is infinitesimal), the A counter is reset. For this reason, when events are
scheduled a finite time in the future, the A’s are ignored. Because no further changes
are scheduled after 8 ns, the simulator goes into an idle mode and waits for another
input change. The table gives the simulator output listing.

After the VHDL code for a digital system has been simulated to verify that it works
correctly, the VHDL code can be synthesized to produce a list of required components
and their interconnections. The synthesizer output can then be used to implement the
digital system using specific hardware such as a CPLD or FPGA. The CAD software
used for implementation generates the necessary information to program the CPLD
or FPGA hardware. The synthesis and implementation of digital logic from VHDL
code is discussed in more detail in Unit 17.

In this chapter, we have covered the basics of VHDL. We have shown how to
use VHDL to model combinational logic and how to construct a VHDL module
using an entity-architecture pair. Because VHDL is a hardware description lan-
guage, it differs from an ordinary programming language in several ways. Most
importantly, VHDL statements execute concurrently because they must model real
hardware in which the components are all in operation at the same time.

FIGURE 10-22 A D B D C D D ns delta | A B C D
Simulation of 0 +0 0O 1 0 1
VHDL Code 1 Be<=notA: 3 +0 1 1 0 1

2 C<=notB; 3 +1 1 0 0 1

3 D <=not C after 5 ns; 3 +2 17 0 1 1

8 +0 1 0 1 O

Problems

10.1  Write VHDL statements that represent the following circuit:
(a) Write a statement for each gate.
(b) Write one statement for the whole circuit.

A" —] F
B_
C— N
1
D—
E" — G
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10.2 Draw the circuit represented by the following VHDL statements:

F<=Eandl;
| <=GorH;
G <=AandB;

H <= not C and D;

10.3 (a) Implement the following VHDL conditional statement using two 2-to-1 MUXes:
F <=AwhenD ='1"else Bwhen E ="1"else
(b) Implement the same statement using gates.

10.4 Write the VHDL code for Figure 9-4 using a conditional signal assignment state-
ment. Use bit_vectors for X, Y, and Z.

10.5 Write a VHDL module that implements a full adder using an array of bit_vectors to
represent the truth table.

10.6 (a) Given that A = “00101101” and B = “10011”, determine the value of F:
F<=notB&"0111" orA&"1"and '1'& A;
(b) Given A = “11000”, B = “10011”, and C = “0111”, evaluate the following
expression:
notA+C*2>B/4&"00"

10.7 Write a VHDL module that finds the average value of four 16-bit unsigned numbers
that are represented by std_logic_vectors. Division by four is best accomplished by
shifting. Round off your answer to the nearest integer.

10.8 Write VHDL code for the system shown in Figure 9-11. Use four concurrent state-
ments to compute the signal on the tri-state bus.

10.9 (a) Draw the circuit represented by the following VHDL statements:
T1 <= not A and not B and 10;
T2 <= notA and B and I1;
T3 <= A and not B and 12;
T4 <= Aand B and I3;
F<=T1orT2orT3 orT4;
(b) Draw a MUX that implements F. Then write a selected signal assignment state-
ment that describes the MUX.

10.10 Assume that the following are concurrent VHDL statements:
(a) L <= P nand Q after 10 ns;
(b) M <= Lnor N after 5 ns;
(¢) R<=not V;

Initially at time t = 0 ns,P =1,Q = 1,and N = 0. If Q becomes 0 at time ¢ = 4 ns,

(1) At what time will statement (a) execute?
(2) At what time will L be updated?
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(3) At what time will statement (c) execute?
(4) At what time will R be updated?

10.11 (a) Write a single concurrent VHDL statement to represent the following circuit.
Do not use parentheses in the statement.

(b) Write individual statements to represent the circuit of part (a). Assume that all
NAND gates have a delay of 10 ns, all NOR gates have a delay of 15 ns, and
inverters have a delay of 5 ns.

10.12 Draw a circuit that implements the following VHDL code.
V<=TandU;
U<=notRorSandPornotQorsS;
T<=notPorQorR;

10.13 Suppose L, M, and N are of type std_logic. If the following are concurrent state-
ments, what are the values of L, M, and N? You can use the resolution function given
in Figure 10-18.
L<="1" L<="0,
M <= "1"when L =0 else 'Z' when L = '1" else 0,
N <= M when L = 0" else not M;
N<='7;

10.14 (a) Given that D = “011001” and E = “110”, determine the value of F.
F<=notE&"“011" or “000100" and not D;
(b) Given A = “101” and B = “011”, evaluate the following expression:
not (A & B) < (not B & A and not A & A)

10.15 Write VHDL code to implement the following logic functions using a 16 words X 3 bits
ROM.
W=A'B'C+ C'D + ACD’
X=A'C'+B'D
Y=BD' +B'CD

10.16 The diagram shows an 8-bit-wide data bus that transfers data between a micro-
processor and memory. Data on this bus is determined by the control signals mRead
and mWrite. When mRead = ‘1’, the data on the memory’s internal bus ‘membus’ is
output to the data bus. When mWrite = ‘1’, the data on the processor’s internal bus
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‘probus’ is output to the data bus. When both control signals are ‘0’, the data bus
must be in a high-impedance state.

Data Bus
Processor Memory
8-Bit

(a) Write VHDL statements to represent the data bus.
(b) Normally mRead = mWrite = ‘1’ does not occur. But if it occurs, what value
will the data bus take?

10.17 (a) Write a selected signal assignment statement to represent the 4-to-1 MUX
shown below. Assume that there is an inherent delay in the MUX that causes
the change in output to occur 15 ns after a change in input.

(b) Repeat (a) using a conditional signal assignment statement.

A
B
B’
0

C D

10.18 (a) Write a complete VHDL module for a two-input NAND gate with 4-ns delay.
(b) Write a complete VHDL module for the following circuit that uses the NAND
gate module of Part (a) as a component.

D I,
_DJ}

p—

10.19 In the following circuit, all gates, including the inverter, have an inertial delay of 10 ns.

(a) Write VHDL code that gives a dataflow description of the circuit. All delays
should be inertial delays.

(b) Using the Direct VHDL simulator simulate the circuit. (Use a View Interval of
100 ns.) Initially set A =1, B =1 and C = 1, then run the simulator for 40 ns.
Change B to 0, and run the simulator for 40 ns. Record the waveform.

(c) Change the VHDL code of Part (a) so that the inverter has a delay of 5 ns.

(d) Repeat Part (b).

(e) Change the VHDL code of Part (c) so that the output OR gate has a transport
delay rather than an inertial delay.

(f) Repeat Part (b)

(g) Explain any differences between the waveforms for Parts (b), (d), and (f).
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10.20 In the following circuit, all gates, including the inverter, have an inertial delay of

10 ns except for gate 3, which has delay 40 ns.

(a) Write VHDL code that gives a dataflow description of the circuit. All delays
should be inertial delays.

(b) Using the Direct VHDL simulator simulate the circuit. (Use a View Interval of
150 ns.) Initially set A =1,B =1,C =1 and D = 0, then run the simulator for
60 ns. Change B to 0, and run the simulator for 60 ns. Record the waveform.

(¢) Change the VHDL code of Part (a) so that the inverter has a delay of 5 ns.

(d) Repeat Part (b).

(e) Change the VHDL code of Part (c) so that gates 4 and 5 have a transport delay
rather than an inertial delay.

(f) Repeat Part (b)

(g) Explain any differences between the waveforms for Parts (b), (d), and (f).

>

C 2

B:
B @—r

10.21 Write VHDL code that gives a behavioral description of a circuit that converts the
representation of decimal digits in BCD to the representation using the 2-4-2-1
weighted code, as follows:

A
B

1

Digit 2421 code

0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

OCooNOOUTDWN=O
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For the six input combinations that do not represent valid BCD digits, the circuit

output should be “XXXX”. Make the inputs and outputs of type std_logic.

(a) Write the code using the when else assignment statement.

(b) Use the VHDL simulator to verify the code of Part (a) for the inputs x = 0100,
0101, 1001, and 1010.

(c) Write the code using the with select when assignment statement.

(d) Use the VHDL simulator to verify the code of Part (c) for the inputs x = 0100,
0101, 1001, and 1010.

10.22 Write VHDL code that gives a behavioral description of a circuit that converts the
representation of decimal digits in the weighted code with weights 8,4, —2 and —1
to the representation using the excess-3 code.

(a) Write the code using the when else assignment statement.

(b) Use the VHDL simulator to verify the code of Part (a) for the inputs x = 0011,
0100, 1001, and 1010.

(c) Write the code using the with select when assignment statement.

(d) Use the VHDL simulator to verify the code of Part (c) for the inputs x = 0100,
0101, 1001, and 1010.

Design Problems

10.A (a) Design a 4-to-1 MUX using only three 2-to-1 MUXes. Write an entity-architec-
ture pair to implement a 2-to-1 MUX. Then write an entity-architecture pair to
implement a 4-to-1 MUX using three instances of your 2-to-1 MUX.

[Hint: The equation for a 4-to-1 MUX can be rewritten as
F=A"(I,B'+I1,B) + A (I,bB' + LB)].

Use the following port definitions:

For the 2-to-1 MUX:
port (i0, i1: in bit; sel: in bit; z: out bit);

For the 4-to-1 MUX:
port (i0, i1, i2, i3: in bit; a, b: in bit; f: out bit);

(b) Simulate your code and test it using the following inputs:

10=12=1,11 =13 =0,AB = 00,01, 11, 10

10.B (a) Show how a BCD to Gray code converter can be designed using a 16 words X
4 bits ROM. Then write an entity-architecture pair to implement the converter
using the ROM. For your code to function correctly, you will need to add the
following two lines of code to the top of your program.

library BITLIB;
use BITLIB.bit_pack.all;
Use the port definition specified below for the ROM:
port (bed: in bit_vector (3 downto 0);
gray: out bit_vector (3 downto 0));
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10.F
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(b) Simulate your code and test it using the following inputs:
BCD = 0010, 0101, 1001

(a) A half adder is a circuit that can add two bits at a time to produce a sum and a
carry. Design a half adder using only two gates. Write an entity-architecture pair
to implement the half adder. Now write an entity-architecture pair to imple-
ment a full adder using two instances of your half adder and an OR gate. Use
the port definitions specified below:

For the half adder: port (a, b: in bit; s, ¢: out bit);
For the full adder: port (a, b, cin: in bit; sum, cout: out bit);

(b) Simulate your code and test it using the following inputs:

abcin=001,011,111,110,100

(a) Using a 3-to-8 decoder and two four-input OR gates, design a circuit that has
three inputs and a 2-bit output. The output of the circuit represents (in binary
form) the number of 1’s present in the input. For example, when the input is
ABC = 101, the output will be Count = 10. Write an entity-architecture pair to
implement a 3-to-8 decoder. Then write an entity-architecture pair for your cir-
cuit, using the decoder as a component. Use the port definitions specified below.
For the 3-to-8 decoder:

port (a, b, c¢: in bit;
y0, y1,y2,y3, y4,y5, y6, y7: out bit);
For the main circuit: port (a, b, ¢: in bit; count: out bit_vector (1 downto 0));

(b) Simulate your code and test it using the following inputs:

abc=000,010,110,111,011

(a) Show how a BCD to seven-segment LED code converter can be designed, using
a 16 words X 7 bits ROM. Then write an entity-architecture pair to implement the
converter using the ROM. Use the vec2int function in BITLIB for this problem.
Use the port definition specified below for the ROM:

port (bcd: in bit_vector (3 downto 0);
seven: out bit_vector (6 downto 0));
(b) Simulate your code and test it using the following inputs:
BCD = 0000, 0001, 1000, 1001

(a) Using a 3-to-8 decoder, two three-input OR gates, and one two-input OR gate,
design a circuit that has three inputs and a 1-bit output. The output of the cir-
cuit is 1 when the input 3-bit number is less than 3 or is greater than 4. Write an
entity-architecture pair to implement a 3-to-8 decoder. Then write an entity-
architecture pair for your circuit using the decoder as a component. Use the
port definitions specified below.

For the 3-to-8 decoder:
port (a, b, ¢ in bit;
y0, y1,y2,y3, y4, y5, y6, y7: out bit);
For the main circuit:
port (a, b, c: in bit; output : out bit);
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(b) Simulate your code and test it using the following inputs:
abc=000,100,101,001,011

(a) Write the VHDL code for a full subtracter, using logic equations. Assume that
the full subtracter has a 5-ns delay.
(b) Write the VHDL code for a 4-bit subtracter using the module defined in (a) as a
component.
(c) Simulate your code and test it using the following inputs:
1100 - 0101, 0110 — 1011

(a) The diagram shows an 8-bit shifter that shifts its input one place to the left.
Write a VHDL module for the shifter.

B (7 down to 0)

N N O N S

Ly~ Ri,

(R I )

A (7 down to 0)

(b) Write a VHDL module that multiplies an 8-bit input (C) by 101, to give a 11-bit
product (D). This can be accomplished by shifting C two places to the left and
adding the result to C. Use two of the modules written in (a) as components and
an overloaded operator for addition.

(c) Simulate your code and test it using the following inputs:

10100101 11111111

(a) Design a 4-to-2 priority encoder using gates [see Unit 9, Study Guide, Part 4(b)].
Write a VHDL module for your encoder. Use the port declaration
Port (y :in std_logic_vector(0 to 3);

al,bl,cl: out std_logic);

(b) Design an 8-to-3 priority encoder (Figure 9-16), using two instances of the 4-to-2
priority encoder you designed, two 2-to-1 multiplexers, and one OR gate. Write a
VHDL module for the 8-to-3 encoder. Use the port declaration
Port (y :in std_logic_vector(0 to 7);

a,b,c,d : out std_logic);
(Hint: In building the 8-to-3 encoder, use one 4-to-2 encoder for the four most
significant bits, and the other for the four least significant bits. Outputs b and ¢
of the 8-to-3 encoder should come from the multiplexers.)

(c) Simulate your code and test it using the following inputs:

00000000, 10000000, 11000000, ---, 11111111

(a) Write a VHDL module for a 4-bit adder, with a carry-in and carry-out, using an

overloaded addition operator and std_logic_vector inputs and outputs.

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

316 unit 10

(b) Design an 8-bit subtracter with a borrow-out, using two of the 4-bit adders you
designed in (a), along with any necessary gates or inverters. Write a VHDL
module for the subtracter.

(c) Simulate your code and test it using the following inputs:

11011011 - 01110110, 01110110 -11011011

10.K (a) Write a VHDL module for a tri-state buffer, with 6-bit data inputs and outputs
and one control input.
(b) Design a 4-to-1 multiplexer with 6-bit data inputs and outputs and two control
inputs. Use four tri-state buffers from part (a) and a 2-to-4 decoder.
(c) Simulate your code and test it for the following data inputs:
000111, 101010, 111000, 010101

10.L (a) Write a VHDL module for a ROM with four inputs and three outputs. The 3-bit
output should be a binary number equal to the number of 1’s in the ROM input.
(b) Write a VHDL module for a circuit that counts the number of 1’s in a 12-bit
number. Use three of the modules from (a) along with overloaded addition
operators.
(c) Simulate your code and test it for the following data inputs:
111111111111, 010110101101, 100001011100

10.M (a) Write a VHDL module for a full subtracter using a ROM to implement the
truth table.
(b) Write a VHDL module for a 3-bit subtracter using the module defined in
part (a). Your module should have a borrow-in and a borrow-out.
(c) Simulate your code and test it for the following data:
110 — 010 with a borrow input of 1
011 — 101 with a borrow input of 0

10.N (a) Design a 4-to-2 priority encoder with an enable input, using gates. (See Unit 9,
Study Guide Part 4(b)). When enable is 0, all outputs are 0. Write a VHDL mod-
ule for the encoder. Use the following port declaration:

Port (y : in std_logic_vector(0 to 3);
enable : in std_logic; a1,b1,c1 : out std_logic);

(b) Design an 8-to-3 priority encoder (Figure 9-16) with an enable input, using two
of the 4-to-2 priority encoders you designed in (a), three OR gates, an AND
gate, and one inverter. Then write a VHDL module for this encoder. Use the
port declaration:

Port (y : in std_logic_vector(0 to 7);
main_enable : in std_logic; a,b,c,d : out std_logic);
(Hint: In building the 8-to-3 encoder, use one 4-to-2 encoder for the four most
significant bits, and another for the four least significant bits. Also, outputs b and
c of the 8-to-3 encoder should come from OR gates. The enable input to the
encoder for the least significant bits depends on the main_enable signal and the
cl output from the encoder for the most significant bits.)
(c) Simulate your code and test it using the following inputs:
00000000, 10000000, 11000000, ---, 11111111
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Latches and Flip-Flops

Objectives

In this unit you will study one of the basic building blocks used in sequen-
tial circuits—the flip-flop. Some of the basic analysis techniques used for
sequential circuits are introduced here. In particular, you will learn how to
construct timing diagrams which show how each signal in the circuit varies
as a function of time. Specific objectives are:

1. Explain in words the operation of S-R and gated D latches.

2. Explain in words the operation of D, D-CE, S-R, J-K, and T flip-flops.

3. Make a table and derive the characteristic (next-state) equation for such
latches and flip-flops. State any necessary restrictions on the input signals.

4. Draw a timing diagram relating the input and output of such latches and
flip-flops.

5. Show how latches and flip-flops can be constructed using gates. Analyze
the operation of a flip-flop that is constructed of gates and latches.

317
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Study Guide

1. Review Section 8.3, Gate Delays and Timing Diagrams. Then study Section 11.1,
Introduction.

(a) In the circuit shown, suppose that at some instant of time the inputs to
both inverters are 0. Is this a stable condition of the circuit?

Assuming that the output of the left inverter changes before the output of
the right inverter, what stable state will the circuit reach? (Indicate 0’s and
1’s on the inverters’ inputs and outputs.)

(b) Work Problem 11.1.

2. Study Section 11.2, Set-Reset Latch.

(a) Build an S-R latch in SimUaid, using NOR gates as in Figure 11-3. Place
switches on the inputs and probes on the outputs. Experiment with it.
Describe in words the behavior of your S-R latch.

(b) For Figure 11-4(b), what values would P and Q assume if § = R = 1?

(c) What restriction is necessary on S and R so that the two outputs of the S-R
latch are complements?

d) State in words the meaning of the equation Q" =S + R'Q.
g q

(e) Starting with Q = 0 and S = R = 1 in Figure 11-10(a), change S to 0 and
trace signals through the latch until steady-state is reached. Then, change
Sto 1 and R to 0 and trace again.

(f) Work Problems 11.2 and 11.3.

3. Study Section 11.3, Gated D Latch.

(a) Build a gated D latch in SimUaid. See Figure 11-11. (Construct the S-R
latch as in Study Guide Section 2(a).) Place switches on the inputs and
probes on the outputs. Experiment with it. Describe in words the behavior
of your gated D latch.

(b) State in words the meaning of the equation Q* = G'Q + GD.
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(c) Given a gated D latch with the following inputs, sketch the waveform for Q.

D

1 r r——1

G

—

0

(d) Work Problem 11.4.

4. Study Section 11.4, Edge-Triggered D Flip-Flop.

(a) Experiment with a D flip-flop in SimUaid. Use the D flip-flop on the parts
menu. Place switches on the inputs and probes on the outputs. Describe in
words the behavior of your D flip-flop.

(b)

the waveform for Q.

Given a rising-edge-triggered D flip-flop with the following inputs, sketch

D

[ 1 ]

Clock

[1 [T [ [

Q

(c)
(d)

Work Programmed Exercise 11.29.
A D flip-flop with a falling-edge trigger is behaving erratically. It has a setup

time of 2 ns and a hold time of 2 ns. The figure shows the inputs to the flip-flop
over a typical clock cycle. Why might the flip-flop be behaving erratically?

—

Clock

[ 1

D

| [

1ns

(©)

e

Suppose that for the circuit of Figure 11-17, new semiconductor technology has

allowed us to improve the delays and setup times. The propagation delay of the
new inverter is 1.5 ns, and the propagation delay and setup times of the new
flip-flop are 3.5 ns and 2 ns, respectively. What is the shortest clock period for
the circuit of Figure 11-17(a) which will not violate the timing constraints?

(f) Work Problem 11.5.

5. Study Section 11.5, S-R Flip-Flop.
(a) Describe in words the behavior of an S-R flip-flop.
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(b) Trace signals through the circuit of Figure 11-19(a) and verify the timing
diagram of Figure 11-19(b).

(c) What is the difference between a master-slave flip-flop and an edge-triggered
flip-flop? Assume that Q changes on the rising clock edge in both cases.

(d) Work Problem 11.6.

Study Section 11.6,J-K Flip-Flop.

(a) Experiment with a J-K flip-flop in SimUaid. Use the J-K flip-flop in the
parts menu. Place switches on the inputs and probes on the outputs.
Describe in words the behavior of your J-K flip-flop.

(b) Derive the next-state equation for the J-K flip-flop.

(c) Examine Figures 11-19(a) and 11-21. Construct a J-K flip-flop, using a mas-
ter-slave S-R flip-flop and two AND gates. (Do not draw the interior of the
S-R flip-flop. Just use the symbol in Figure 11-18.)

(d) Work Problem 11.7.

Study Section 11.7, T Flip-Flop.

(a) Construct a T flip-flop in SimUaid from a D flip-flop as in Figure 11-24(b).
Place switches on the inputs and probes on the outputs. Experiment with it.
Describe in words the behavior of the T flip-flop.

(b) Complete the following timing diagram (assume that Q = 0 initially):

w 00 [

T

0

Study Section 11.8, Flip-Flops with Additional Inputs.
(a) To set the flip-flop of Figure 11-25 to Q = 1 without using the clock, the

CIrN input should be set to

and the PreN input to

To reset this flip-flop to Q = 0 without using the clock, the

should be set to
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(b) Complete the following timing diagram for a rising-edge-triggered D flip-
flop with CIrN and PreN inputs. Assume Q begins at 0.

coek | [ | | [ 1 ] ] |

D |

CIiN | |

PreN | |

0

(¢) In Figure 11-27(a), what would happen if En changed from 1 to 0
while CLK = 1?
What if En changed when CLK = 0?
In order to have Q change synchronization with the clock, what restriction
must be placed on the time at which En can change?

Why does this restriction not apply to Figures 11-27(b) and (c)?

(d) Make a table similar to Figure 11-25(b) that describes the operation of a
D flip-flop with a falling-edge clock input, a clock enable input, and an
asynchronous active-low clear input (CIrN), but no preset input.

(e) Work Problems 11.8 and 11.9.

Study Section 11.9, Summary.

(a) Given one of the flip-flops in this chapter or a similar flip-flop, you
should be able to derive the characteristic equation which gives the next
state of the flip-flop in terms of the present state and inputs. You should
understand the meaning of each of the characteristic equations given in
Section 11.9.

(b) An S-R flip-flop can be converted to a T flip-flop by adding gates at the S
and R inputs. The S and R inputs must be chosen so that the flip-flop will
change state whenever T = 1 and the clock is pulsed. In order to determine
the S and R inputs, ask yourself the question, “Under what conditions must
the flip-flop be set to 1, and under what conditions must it be reset?” The
flip-flop must be set to 1if Q = 0and 7 = 1.

Therefore, S = . In a similar manner, determine the equation
for R and draw the circuit which converts an S-R flip-flop to a T flip-flop.
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(c) Work Problem 11.10.

10. When you are satisfied that you can meet the objectives of this unit, take the
readiness test.

Latches and Flip-Flops

11.1 Introduction

Sequential switching circuits have the property that the output depends not only on
the present input but also on the past sequence of inputs. In effect, these circuits
must be able to “remember” something about the past history of the inputs in order
to produce the present output. Latches and flip-flops are commonly used memory
devices in sequential circuits. Basically, latches and flip-flops are memory devices
which can assume one of two stable output states and which have one or more
inputs that can cause the output state to change. Several common types of latches
and flip-flops are described in this unit.

In Units 12 through 16, we will discuss the analysis and design of synchronous digi-
tal systems. In such systems, it is common practice to synchronize the operation of all
flip-flops by a common clock or pulse generator. Each of the flip-flops has a clock input,
and the flip-flops can only change state in response to a clock pulse. The use of a clock
to synchronize the operation of several flip-flops is illustrated in Units 12 and 13. A
memory element that has no clock input is often called a latch, and we will follow this
practice. We will then reserve the term flip-flop to describe a memory device that
changes output state in response to a clock input and not in response to a data input.

The switching circuits that we have studied so far have not had feedback connec-
tions. By feedback we mean that the output of one of the gates is connected back into
the input of another gate in the circuit so as to form a closed loop. In order to con-
struct a switching circuit that has memory, such as a latch or flip-flop, we must intro-
duce feedback into the circuit. For example, in the NOR-gate circuit of Figure 11-3(a),
the output of the second NOR gate is fed back into the input of the first NOR gate.
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FIGURE 11-1 Feedback

t

(a) Inverter with feedback (b) Oscillation at inverter output

In simple cases, we can analyze circuits with feedback by tracing signals through
the circuit. For example, consider the circuit in Figure 11-1(a). If at some instant of
time the inverter input is 0, this 0 will propagate through the inverter and cause the
output to become 1 after the inverter delay. This 1 is fed back into the input, so after
the propagation delay, the inverter output will become 0. When this 0 feeds back
into the input, the output will again switch to I, and so forth. The inverter output will
continue to oscillate back and forth between 0 and 1, as shown in Figure 11-1(b), and
it will never reach a stable condition. The rate at which the circuit oscillates is deter-
mined by the propagation delay in the inverter.

FIGURE 11-2

(@ (b)

Next, consider a feedback loop which has two inverters in it, as shown in
Figure 11-2(a). In this case, the circuit has two stable conditions, often referred to as
stable states. If the input to the first inverter is 0, its output will be 1. Then, the input to
the second inverter will be 1, and its output will be 0. This 0 will feed back into the first
inverter, but because this input is already 0, no changes will occur. The circuit is then in
a stable state. As shown in Figure 11-2(b), a second stable state of the circuit occurs
when the input to the first inverter is 1 and the input to the second inverter is 0.

11.2 Set-Reset Latch

We can construct a simple latch by introducing feedback into a NOR-gate circuit, as
seen in Figure 11-3(a). As indicated, if the inputs are S = R = 0, the circuit can
assume a stable state with Q = 0 and P = 1. Note that this is a stable condition of
the circuit because P = 1 feeds into the second gate forcing the output to be Q = 0,
and Q = 0 feeds into the first gate allowing its output to be 1. Now if we change S
to 1, P will become 0. This is an unstable condition or state of the circuit because
both the inputs and output of the second gate are 0; therefore Q will change to 1,
leading to the stable state shown in Figure 11-3(b).

FIGURE 11-3

RO0 ) RO0
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FIGURE 11-4

ROO0O

If § is changed back to 0, the circuit will not change state because Q = 1 feeds
back into the first gate, causing P to remain 0, as shown in Figure 11-4(a). Note that
the inputs are again § = R = 0, but the outputs are different than those with which
we started. Thus, the circuit has two different stable states for a given set of inputs.
If we now change R to 1, Q will become 0 and P will then change back to 1, as seen
in Figure 11-4(b). If we then change R back to 0, the circuit remains in this state and
we are back where we started.

This circuit is said to have memory because its output depends not only on the
present inputs, but also on the past sequence of inputs. If we restrict the inputs so that
R = § = 11is not allowed, the stable states of the outputs P and Q are always comple-
ments, that is, P = Q'. To emphasize the symmetry between the operation of the two
gates, the circuit is often drawn in cross-coupled form [see Figure 11-5(a)]. As shown
in Figures 11-3(b) and 11-4(b), an input S = 1 sets the output to Q = 1, and an input
R =1 resets the output to Q = 0. When used with the restriction that R and S cannot
be 1 simultaneously, the circuit is commonly referred to as a set-reset (S-R) latch and
given the symbol shown in Figure 11-5(b). Note that although O comes out of the NOR
gate with the R input, the standard S-R latch symbol has Q directly above the § input.

If S = R =1, the latch will not operate properly, as shown in Figure 11-6. The
notation 1 — 0 means that the input is originally 1 and then changes to 0. Note that
when S and R are both I, P and Q are both 0. Therefore, P is not equal to Q’, and
this violates a basic rule of latch operation that requires the latch outputs to be com-
plements. Furthermore, if § and R are simultaneously changed back to 0, P and Q
may both change to 1. If § = R =0 and P = Q =1, then after the 1’s propagate

FIGURE 11-5 0 0’ o’ 0
S-R Latch | |

(a) (b)

FIGURE 11-6 0
Improper S-R Latch S P 0>150-1
Operation

0 0—=1—0—1

1—0
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FIGURE 11-7 ]
Timing Diagram ST o 1 0
for S-R Latch

R

\
\
|
|
| : |
0 e | e |
| | | |
1 1 1 1 '

f+e f3+e€

through the gates, P and Q will become 0 again, and the latch may continue to
oscillate if the gate delays are equal.

Figure 11-7 shows a timing diagram for the S-R latch. Note that when § changes
to 1 at time , Q changes to 1 a short time (€) later. (e represents the response time
or delay time of the latch.) At time t,, when S changes back to 0, Q does not change.
At time £3, R changes to 1, and Q changes back to 0 a short time (e) later. The dura-
tion of the S (or R) input pulse must normally be at least as great as € in order for a
change in the state of Q to occur. If § = 1 for a time less than €, the gate output will
not change and the latch will not change state.

When discussing latches and flip-flops, we use the term present state to denote the
state of the Q output of the latch or flip-flop at the time any input signal changes, and
the term next state to denote the state of the Q output after the latch or flip-flop has
reacted to the input change and stabilized. If we let Q(¢) represent the present state
and Q(t + €) represent the next state, an equation for Q(¢ + €) can be obtained from
the circuit by conceptually breaking the feedback loop at Q and considering Q(¢) as
an input and Q(¢ + €) as the output. Then for the S-R latch of Figure 11-3

Ot +¢) = R(O)'[S() + Q)] = R(1)'S(®) + R(1)' Q1) (11-1)
and the equation for output P is
P(1) = S@1)'0)’ (11-2)

Normally we write the next-state equation without including time explicitly, using Q
to represent the present state of the latch and Q™ to represent the next state:

Q" =R'S+RQ (11-3)
P=50Q (11-4)

These equations are mapped in the next-state and output tables of Table 11-1. The
stable states of the latch are circled. Note that for all stable states, P = Q' except when
S = R =1. As discussed previously, this is one of the reasons why S=R =1 is

TABLE 11-1 Present
S-R Latch State SR SR SR SR
Next State Q 00 01 1 10 00 01 11 10

and Output 0 ) o © 1 1 1 0 0
1 @ 0 0 @® 0 0 0 0

Next State Q* Present Output P

SR SR SR SR
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FIGURE 11-8 s
Derivation of Q©  ro\__ 0 I

Q+
for an S-R Latch ( N\

11 0 X

_ - 00 -0

ol o X
_/

(a) Q" map (b) Truth table

o

=)

-
NN - X =-E=-X=1E%
—o-—~0o—-0-0|0

_]In uts not
allowed

disallowed as an input combination to the S-R latch. Making § = R = 1 a don’t-care
combination allows simplifying the next-state equation, as shown in Figure 11-8(a).
After plotting Equation (11-3) on the map and changing two entries to don’t-cares,
the next-state equation simplifies to

Q"=S+RQ (SR =0) (11-5)

In words, this equation tells us that the next state of the latch will be 1 either if it is
set to 1 with an S input, or if the present state is 1 and the latch is not reset. The con-
dition SR = 0 implies that S and R cannot both be 1 at the same time. An equation
that expresses the next state of a latch in terms of its present state and inputs will be
referred to as a next-state equation, or characteristic equation.

Another approach for deriving the characteristic equation for an S-R latch is
based on constructing a truth table for the next state of Q. We previously
discussed the latch operation by tracing signals through the gates, and the truth table
in Figure 11-8(b) is based on this discussion. Plotting O on a Karnaugh map gives the
same result as Figure 11-8(a).

The S-R latch is often used as a component in more complex latches and flip-flops
and in asynchronous systems. Another useful application of the S-R latch is for
debouncing switches. When a mechanical switch is opened or closed, the switch contacts
tend to vibrate or bounce open and closed several times before settling down to their
final position. This produces a noisy transition, and this noise can interfere with the
proper operation of a logic circuit. The input to the switch in Figure 11-9 is connected to
a logic 1 (+V).The pull-down resistors connected to contacts a and b assure that when
the switch is between a and b the latch inputs S and R will always be at a logic 0, and the

FIGURE 11-9

Switch Debouncing S S |'| |-| I_
with an S-R Latch

| |
0 \ \

0 \ \ \

R — — I
Switch | | Switch between | | Switch
L ata M aand b M
= Bounce Bounce
ata ath
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latch output will not change state. The timing diagram shows what happens when the
switch is flipped from a to b. As the switch leaves a, bounces occur at the R input; when
the switch reaches b, bounces occur at the S input. After the switch reaches b, the first
time S becomes 1, after a short delay the latch switches to the O = 1 state and remains
there. Thus Q is free of all bounces even though the switch contacts bounce. This
debouncing scheme requires a double throw switch that switches between two contacts;
it will not work with a single throw switch that switches between one contact and open.

An alternative form of the S-R latch uses NAND gates, as shown in Figure 11-10.
We will refer to this circuit as an S-R latch, and the table describes its operation.
We have labeled the inputs to this latch S and R because S = 0 will set Q to 1 and
R = 0 will reset O to 0. If S and R are 0 at the same time, both the Q and Q' out-
puts are forced to 1. Therefore, for the proper operation of this latch, the condition

S = R = 01is not allowed.

FIGURE 11-10  § — ’ S R ol o
S-R Latch 17 1 o 0
= 1 1 1 1
s —ds ) —
LY 1.0 0] 0
- 0’ R—dr 0 |— T 0 1 0
R 01 0 1
(a) ) 0 1 1 1
0 0 0 ‘] Inputs not
0o 0 1 -/ allowed

(©)

11.3 Gated D Latch

A gated D latch (Figure 11-11) has two inputs—a data input (D) and a gate input (G).
The D latch can be constructed from an S-R latch and gates (Figure 11-11(a)). When
G =0,5=R=0,s0 Q does not change. When G =1and D =1,§=1and R =0, so
Qissettol.When G =1and D = 0,5 = 0and R = 1,s0 Q isreset to 0. In other words,
when G = 1, the Q output follows the D input, and when G = 0, the Q output holds
the last value of D (no state change). This type of latch is also referred to as a trans-
parent latch because when G = 1, the Q output is the same as the D input. From the
truth table (Figure 11-12), the characteristic equation for the latchis 0" = G’Q + GD.

FIGURE 11-11
Gated D Latch G 0 1 0

DT
N

(a) (b)
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FIGURE 11-12 —pr ol GDQ| Q" GD

Symbol and Truth L 0001 o oN\_ 00 01 11 10
Table for Gated 6 ol o001/ 1 ol o 0 | 0

Latch 0101 o
011 1 1 Cl :)1 w .

100 O

101 0 0"=G'Q+GD
1101 1
111 1

11.4 Edge-Triggered D Flip-Flop

A D flip-flop (Figure 11-13) has two inputs, D (data) and Ck (clock). The small
arrowhead on the flip-flop symbol identifies the clock input. Unlike the D latch, the
flip-flop output changes only in response to the clock,not to a change in D. If the out-
put can change in response to a 0 to 1 transition on the clock input, we say that the
flip-flop is triggered on the rising edge (or positive edge) of the clock. If the output
can change in response to a 1 to 0 transition on the clock input, we say that the flip-
flop is triggered on the falling edge (or negative edge) of the clock. An inversion bub-
ble on the clock input indicates a falling-edge trigger (Figure 11-13(b)), and no bub-
ble indicates a rising-edge trigger [Figure 11-13(a)]. The term active edge refers to the
clock edge (rising or falling) that triggers the flip-flop state change.

FIGURE 11-13 | | | |
D Flip-Flops 0’ ) 0 0
FF FF
Ck D Ck D
I T
(a) Rising-edge trigger (b) Falling-edge trigger (c) Truth table
The state of a D flip-flop after the active clock edge (Q) is equal to the input
(D) before the active edge. For example, if D = 1 before the clock pulse, O = 1 after
the active edge, regardless of the previous value of Q. Therefore, the characteristic
equation is Q" = D. If D changes at most once following each clock pulse, the out-
put of the flip-flop is the same as the D input, except that the output changes are
delayed until after the active edge of the clock pulse, as illustrated in Figure 11-14.
FIGURE 11-14 ‘ ‘ ‘ ‘ ‘ ‘
Timing for D 1| 0o | 1| 1 o | \
D Flip-Flop 1 l ‘l 1 1 l ‘ l_l ‘

(Falling-Edge  Ck | [ | | |

b
riggen) 0 7 o [ 1 1 1 1 o io
|
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FIGURE 11-15 P
D Flip-Flop b Dy 0 P2 Q0

(Rising-Edge . : ,
Trigger) CLE T[>W G I_ G

(a) Construction from two gated D latches

CLK =G, ' ' '

Q

(b) Timing analysis

A rising-edge-triggered D flip-flop can be constructed from two gated D latches
and an inverter, as shown in Figure 11-15(a). The timing diagram is shown in Figure
11-15(b). When CLK = 0, G; = 1, and the first latch is transparent so that the P out-
put follows the D input. Because G, = 0, the second latch holds the current value of
Q. When CLK changes to 1, G, changes to 0, and the current value of D is stored in
the first latch. Because G, = 1, the value of P flows through the second latch to the
Q output. When CLK changes back to 0, the second latch takes on the value of P and
holds it and, then, the first latch starts following the D input again. If the first latch
starts following the D input before the second latch takes on the value of P, the flip-
flop will not function properly. Therefore, the circuit designers must pay careful
attention to timing issues when designing edge-triggered flip-flops. With this circuit,
output state changes occur only following the rising edge of the clock. The value of
D at the time of the rising edge of the clock determines the value of O, and any extra
changes in D that occur between rising clock edges have no effect on Q.

Because a flip-flop changes state only on the active edge of the clock, the propaga-
tion delay of a flip-flop is the time between the active edge of the clock and the result-
ing change in the output. However, there are also timing issues associated with the D
input. To function properly, the D input to an edge-triggered flip-flop must be held at a
constant value for a period of time before and after the active edge of the clock. If D
changes at the same time as the active edge, the behavior is unpredictable. The amount
of time that D must be stable before the active edge is called the setup time (%), and
the amount of time that D must hold the same value after the active edge is the hold
time (#,). The times at which D is allowed to change during the clock cycle are shaded
in the timing diagram of Figure 11-16.The propagation delay (t,) from the time the clock
changes until the Q output changes is also indicated. For Figure 11-15(a), the setup time
allows a change in D to propagate through the first latch before the rising edge of Clock.
The hold time is required so that D gets stored in the first latch before D changes.

Using these timing parameters, we can determine the minimum clock period for
a circuit which will not violate the timing constraints. Consider the circuit of
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FIGURE 11-16 e O
Setup and Hold | ‘ |
Times for an D \ | ] [ |
Edge-Triggered ‘ |
D Flip-Flop CLK

I I
0 i < T -
I I

Figure 11-17(a). Suppose the inverter has a propagation delay of 2 ns, and suppose
the flip-flop has a propagation delay of 5 ns and a setup time of 3 ns. (The hold time
does not affect this calculation.) Suppose, as in Figure 11-17(b), that the clock period
is 9 ns, i.e., 9 ns is the time between successive active edges (rising edges for this fig-
ure). Then, 5 ns after a clock edge, the flip-flop output will change, and 2 ns after that,
the output of the inverter will change. Therefore, the input to the flip-flop will change
7 ns after the rising edge, which is 2 ns before the next rising edge. But the setup time
of the flip-flop requires that the input be stable 3 ns before the rising edge; therefore,
the flip-flop may not take on the correct value.

Suppose instead that the clock period were 15 ns, as in Figure 11-17(c). Again,
the input to the flip-flop will change 7 ns after the rising edge. However, because the
clock is slower, this is 8 ns before the next rising edge. Therefore, the flip-flop will
work properly. Note in Figure 11-17(c) that there is 5 ns of extra time between the
time the D input is correct and the time when it must be correct for the setup time
to be satisfied. Therefore, we can use a shorter clock period, and have less extra
time, or no extra time. Figure 11-17(d) shows that 10 ns is the minimum clock peri-
od which will work for this circuit.

FIGURE 11-17 Setup

Determination of J time 3 ns r

CLK < >

Minimum Clock J —l—,—,—

[ |

Period LDC* D 0 o| | Flip-flop I \

' } delay 5 ns = :
CLK — \ Inverter | | T

Dl delay 2ns | | }

| | |

I S Y

(a) Simple flip-flop circuit (b) Setup time not satisfied
Setup Setup
time 3 ns time 3 ns
CLK J CLK
—— I Extra time | | — | |
0 } ;lip—ﬂop } 5ns ‘ } 0 } Flip-flop } }
| elay 5 ns ‘ ‘ ‘ | delay 5 ns . E———
\ Inverter | ! ! \ Inverter | —
D } delay 2 ns | } } D } delay 2 ns | }
| | | | | | | | |
N I T Iy T O O
(c) Setup time satistied (d) Minimum clock period
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FIGURE 11-18
S-R Flip-Flop

FIGURE 11-19
S-R Flip-Flop
Implementation
and Timing

Downloaded From : www.EasyEngineering.net

Latches and Flip-Flops 331

S-R Flip-Flop

An S-R flip-flop (Figure 11-18) is similar to an S-R latch in that § = 1 sets the O out-
put to 1,and R = 1 resets the Q output to 0. The essential difference is that the flip-
flop has a clock input, and the Q output can change only after an active clock edge.
The truth table and characteristic equation for the flip-flop are the same as for the
latch, but the interpretation of Q7 is different. For the latch, Q7 is the value of Q
after the propagation delay through the latch, while for the flip-flop, Q™ is the value
that Q assumes after the active clock edge.

Figure 11-19(a) shows an S-R flip-flop constructed from two S-R latches and
gates. This flip-flop changes state after the rising edge of the clock. The circuit is
often referred to as a master-slave flip-flop. When CLK = 0, the S and R inputs set
the outputs of the master latch to the appropriate value while the slave latch holds
the previous value of Q. When the clock changes from 0 to 1, the value of P is held
in the master latch and this value is transferred to the slave latch. The master latch
holds the value of P while CLK = 1, and, hence, Q does not change. When the clock
changes from 1 to 0, the Q value is latched in the slave, and the master can process
new inputs. Figure 11-19(b) shows the timing diagram. Initially, S = 1 and Q changes
to 1 at ;. Then R = 1 and Q changes to 0 at £;.

s o Operation summary:
’ S=R=0 No state change
—P>Ck S=1,R=0 Set O to 1 (after active Ck edge)
, S=0,R=1 Reset O to 0 (after active Ck edge)
9 S=R=1 Not allowed
S pu—
B
Sy or—0o
CLK ——DO—[ Master [
Slave
R, P’ ,
R — R, o'H—0
(a) Implementation with two latches
CLK I | | l |
| |
CLK’ | | | |
|

0 1| \ i | 1|

(b) Timing analysis
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At first glance, this flip-flop appears to operate just like an edge-triggered
flip-flop, but there is a subtle difference. For a rising-edge-triggered flip-flop the
value of the inputs is sensed at the rising edge of the clock, and the inputs can
change while the clock is low. For the master-slave flip-flop, if the inputs change
while the clock is low, the flip-flop output may be incorrect. For example, in
Figure 11-19(b) at ¢4, S = 1 and R = 0, so P changes to 1. Then S changes to 0 at
ts, but P does not change, so at t5, Q changes to 1 after the rising edge of CLK.
However, at t5, S = R = 0, so the state of QO should not change. We can solve this
problem if we only allow the § and R inputs to change while the clock is high.

11.6 J-K Flip-Flop

The J-K flip-flop (Figure 11-20) is an extended version of the S-R flip-flop. The J-K
flip-flop has three inputs—/, K, and the clock (CK). The J input corresponds to S, and
K corresponds to R.That is,if / = 1 and K = 0, the flip-flop output is set to Q = 1 after
the active clock edge; and if K =1 and J = 0, the flip-flop output is reset to Q =0
after the active edge. Unlike the S-R flip-flop, a 1 input may be applied simultaneous-
ly toJ and K, in which case the flip-flop changes state after the active clock edge. When
J = K = 1, the active edge will cause Q to change from 0 to 1, or from 1 to 0. The next-
state table and characteristic equation for the J-K flip-flop are given in Figure 11-20(b).

Figure 11-20(c) shows the timing for a J-K flip-flop. This flip-flop changes state a
short time (z,) after the rising edge of the clock pulse, provided that J and K have

FIGURE 11-20 JKQ | QF
J-K Flip-Flop 000/| O
(Q Changes on the 001/ 1
Rising Edge) | | 0101 0
o’ 0 01110

FF 100 | 1
101 1

CK
K / 110 1
I 11110
(a) J-K flip-flop (b) Truth table and characteristic equation

oL L

(c) J-K flip-flop timing
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appropriate values. If / =1 and K = 0 when Clock = 0, Q will be set to 1 following
the rising edge. If K =1 and J = 0 when Clock = 0, Q will be set to 0 after the rising
edge. Similarly, if J = K = 1, Q will change state after the rising edge. Referring to
Figure 11-20(c), because Q = 0,J =1, and K = 0 before the first rising clock edge, O
changes to 1 at #. Because Q = 1,J =0, and K = 1 before the second rising clock
edge, O changes to 0 at £,. Because Q =0,/ =1, and K = 1 before the third rising
clock edge, O changes to 1 at t.

One way to realize the J-K flip-flop is with two S-R latches connected in a
master-slave arrangement, as shown in Figure 11-21. This is the same circuit as for
the S-R master-slave flip-flop, except S and R have been replaced with J and K, and
the Q and Q' outputs are feeding back into the input gates. Because S = J-Q"-CIk’
and R = K-Q-CIk’, only one of S and R inputs to the first latch can be 1 at any
given time. If Q = 0 and J = 1, then S = 1 and R = 0, regardless of the value of K.
If O =1and K =1, then S = 0 and R = 1, regardless of the value of J.

FIGURE 11-21 |_
Master-Slave J —} S, P
J-K Flip-Flop _} S5 0 Q
(Q Changes on CLK— D Master Slave

Rising Edge) K—} R, P

R, Q o’

11.7 T Flip-Flop

The T flip-flop, also called the toggle flip-flop, is frequently used in building counters.
Most CPLDs and FPGAs can be programmed to implement T flip-flops. The T flip-flop
in Figure 11-22(a) has a T input and a clock input. When 7 = 1 the flip-flop changes
state after the active edge of the clock. When T = 0, no state change occurs. The next-
state table and characteristic equation for the T flip-flop are given in Figure 11-22(b).
The characteristic equation states that the next state of the flip-flop (Q™) will be 1 iff the
present state (Q) is 1 and 7' = 0 or the present state is 0 and 7' = 1.

Figure 11-23 shows a timing diagram for the T flip-flop. At times ¢, and ¢, the T
input is 1 and the flip-flop state (Q) changes a short time (t,) after the falling edge
of the clock pulse. At times ¢ and t; the 7 input is 0, and the clock edge does not
cause a change of state.

FIGURE 11-22 | |
T Flip-Flop 0 0

[0'=T0+T0' =T®0
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FIGURE 11-23
Timing Diagram
for T Flip-Flop
(Falling-Edge
Trigger)

FIGURE 11-24
Implementation
of T Flip-Flops

11.8

FIGURE 11-25
D Flip-Flop with
Clear and Preset
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o M1 1 T

[0} } —> |<7 fp | —> |<7 tp
31 t 13 1y
o’ 0 o’ 0
|
T Clock Clock

T

(a) Conversion of J-K to T’ (b) Conversion of D to T

One way to implement a T flip-flop is to connect the J and K inputs of a J-K flip-
flop together, as shown in Figure 11-24(a). Substituting 7 for J and K in the J-K
characteristic equation gives

Q"=JQ"+KQ=TQ" +T'Q
which is the characteristic equation for the T flip-flop. Another way to realize a T
flip-flop is with a D flip-flop and an exclusive-OR gate [Figure 11-24(b)]. The D
inputis Q® T,s0 Q" = Q ® T =TQ' + T'Q,which is the characteristic equation
for the T flip-flop.

Flip-Flops with Additional Inputs

Flip-flops often have additional inputs which can be used to set the flip-flops to an
initial state independent of the clock. Figure 11-25 shows a D flip-flop with clear and
preset inputs. The small circles (inversion symbols) on these inputs indicate that a
logic O (rather than a 1) is required to clear or set the flip-flop. This type of input is
often referred to as active-low because a low voltage or logic 0 will activate the clear

Ck D PreN CIrN Qt
X X 0 0 (not allowed)
| | X X 0 1 1
o’ 0 X X 1 0 0
CIrN —q o— PreN
o 0 1 1 0
D 1 1 1 1 1
| | 0,14 x 1 1 Q (no change)

() (b)

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Latches and Flip-Flops 335

or preset function. We will use the notation CIrN or PreN to indicate active-low clear
and preset inputs. Thus, a logic 0 applied to CIrN will reset the flip-flop to Q = 0, and
a 0 applied to PreN will set the flip-flop to Q = 1.These inputs override the clock and
D inputs. That is, a 0 applied to the CIrN will reset the flip-flop regardless of the val-
ues of D and the clock. Under normal operating conditions, a 0 should not be applied
simultaneously to CIrN and PreN. When CIrN and PreN are both held at logic 1, the
D and clock inputs operate in the normal manner. CIrN and PreN are often referred
to as asynchronous clear and preset inputs because their operation does not depend
on the clock. The table in Figure 11-25(b) summarizes the flip-flop operation. In the
table, T indicates a rising clock edge, and X is a don’t-care. The last row of the table
indicates that if Ck is held at 0, held at 1, or has a falling edge, O does not change.

Figure 11-26 illustrates the operation of the clear and preset inputs. At ¢, CIrN = 0
holds the Q output at 0, so the rising edge of the clock is ignored. At #, and £, normal
state changes occur because CIrN and PreN are both 1. Then, Q is set to 1 by PreN = 0,
but Q is cleared at #, by the rising edge of the clock because D = 0 at that time.

In synchronous digital systems, the flip-flops are usually driven by a common
clock so that all state changes occur at the same time in response to the same clock
edge. When designing such systems, we frequently encounter situations where we
want some flip-flops to hold existing data even though the data input to the flip-flops
may be changing. One way to do this is to gate the clock, as shown in Figure 11-27(a).
When En = 0, the clock input to the flip-flop is 0, and Q does not change. This
method has two potential problems. First, gate delays may cause the clock to arrive
at some flip-flops at different times than at other flip-flops, resulting in a loss of syn-
chronization. Second, if En changes at the wrong time, the flip-flop may trigger due
to the change in En instead of due to the change in the clock, again resulting in loss
of synchronization. Rather than gating the clock, a better way is to use a flip-flop with
a clock enable (CE). Such flip-flops are commonly used in CPLDs and FPGAs.

Figure 11-27(b) shows a D flip-flop with a clock enable, which we will call a D-CE
flip-flop. When CE = 0, the clock is disabled and no state change occurs, so Q" = Q.
When CE = 1, the flip-flop acts like a normal D flip-flop, so Q" = D. Therefore, the
characteristic equation is Q% = QeCE’' + D+CE. The D-CE flip-flop is easily imple-
mented using a D flip-flop and a multiplexer (Figure 11-27(c)). For this circuit, the
MUX output is

0*=D=Q-CE'+ D, CE

Because there is no gate in the clock line, this cannot cause a synchronization problem.

FIGURE 11-26
Timing Diagram CLKE |
for D Flip-Flop H |

with Asynchronous
Clear and Preset CIN

PreN

Q
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FIGURE 11-27
D Flip-Flop with _1p ol— _1p ol— D 0
Clock Enable Diy
- CE
CLK —
o _D—o Ck 0 |— —P>Cck 0 — CLK ——o>Ck 0’ |—
(a) Gating the clock (b) D-CE symbol (c) Implementation

11.9 Summary

In this unit, we have studied several types of latches and flip-flops. Flip-flops have a
clock input, and the output changes only in response to a rising or falling edge of the
clock. All of these devices have two output states: Q = 0 and Q = 1. For the S-R
latch, S = 1 sets Q to 1,and R = 1 resets Q to 0. S = R = 1 is not allowed. The S-R
flip-flop is similar except that Q only changes after the active edge of the clock. The
gated D latch transmits D to the Q output when G = 1. When G is 0, the current
value of D is stored in the latch and Q does not change. For the D flip-flop, Q is
set equal to D after the active clock edge. The D-CE flip-flop works the same
way, except the clock is only enabled when CE = 1.The J-K flip-flop is similar to the
S-R flip-flop in that when J = 1 the active clock edge sets Q to 1, and when K = 1,
the active edge resets Q to 0. When J = K = 1, the active clock edge causes Q to
change state. The T flip-flop changes state on the active clock edge when T = 1; oth-
erwise, Q does not change. Flip-flops can have asynchronous clear and preset inputs
that cause Q to be cleared to 0 or preset to 1 independently of the clock.

Flip-flops can be constructed using gate circuits with feedback. Analysis of such
circuits can be accomplished by tracing signal changes through the gates. Analysis can
also be done using flow tables and asynchronous sequential circuit theory, but that is
beyond the scope of this text. Timing diagrams are helpful in understanding the time
relationships between the input and output signals for a latch or flip-flops. In general,
the inputs must be applied a specified time before the active clock edge (the setup
time), and they must be held constant a specified time after the active edge (the hold
time). The time after the active clock edge before Q changes is the propagation delay.

The characteristic (next-state) equation for a flip-flop can be derived as follows:
First, make a truth table that gives the next state (Q™) as a function of the present state
(Q) and the inputs. Any illegal input combinations should be treated as don’t-cares.
Then, plot a map for Q" and read the characteristic equation from the map.

The characteristic equations for the latches and flip-flops discussed in this chap-

ter are:
Q"=S+RQ(SR=0) (S-R latch or flip-flop) (11-6)
0"=GD+ G'Q (gated D latch) (11-7)
0" =D (D flip-flop) (11-8)
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Q" = D-CE + Q-CE’ (D-CE flip-flop) (11-9)
Q" =JQ' +K'Q (JK flip-flop) (11-10)
0"'=T® Q=TQ +TQ (T flip-flop) (11-11)

In each case, Q represents an initial or present state of the flip-flop, and Q™ repre-
sents the final or next state. These equations are valid only when the appropriate restric-
tions on the flip-flop inputs are observed. For the S-R flip-flop, S = R = 1 is forbidden.
For the master-slave S-R flip-flop, S and R should not change during the half of the clock
cycle preceding the active edge. Setup and hold time restrictions must also be satisfied.

The characteristic equations given above apply to both latches and flip-flops, but
their interpretation is different for the two cases. For example, for the gated D latch,
Q7 represents the state of the flip-flop a short time after one of the inputs changes.
However, for the D flip-flop, Q" represents the state of the flip-flop a short time
after the active clock edge.

Conversion of one type of flip-flop to another is usually possible by adding exter-
nal gates. Figure 11-24 shows how a J-K flip-flop and a D flip-flop can be converted
to a T flip-flop.

Problems

11.1 Assume that the inverter in the given circuit has a propagation delay of 5 ns and the
AND gate has a propagation delay of 10 ns. Draw a timing diagram for the circuit
showing X, Y, and Z. Assume that X is initially 0, Y is initially 1, after 10 ns X
becomes 1 for 80 ns, and then X is 0 again.

LDCL}_Z

—

X

11.2 A latch can be constructed from an OR gate, an AND gate, and an inverter con-
nected as follows:

H

(a) What restriction must be placed on R and H so that P will always equal Q’
(under steady-state conditions)?

(b) Construct a next-state table and derive the characteristic (next-state) equation for
the latch.
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(c) Complete the following timing diagram for the latch.

f—

0

11.3 This problem illustrates the improper operation that can occur if both inputs to an
S-R latch are 1 and are then changed back to 0. For Figure 11-6, complete the fol-
lowing timing chart, assuming that each gate has a propagation delay of exactly 10
ns. Assume that initially P = 1 and Q = 0. Note that when ¢ = 100 ns, S and R are
both changed to 0. Then, 10 ns later, both P and Q will change to 1. Because these
1’s are fed back to the gate inputs, what will happen after another 10 ns?

sl 1|
|
|
i
|
|
|
|

\
\
|
} \ \

Ol L b

0 50 100 1150 200 t(ns)
140

11.4 Design a gated D latch using only NAND gates and one inverter.

11.5 What change must be made to Figure 11-15(a) to implement a falling-edge-triggered
D flip-flop? Complete the following timing diagram for the modified flip-flop.

Clock = G, —l I—l
ol 1T 111 [ ] [

0

11.6 A reset-dominant flip-flop behaves like an S-R flip-flop, except that the input
S = R = 1is allowed, and the flip-flop is reset when § = R = 1.
(a) Derive the characteristic equation for a reset-dominant flip-flop.
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(b) Show how a reset-dominant flip-flop can be constructed by adding gate(s) to an
S-R flip-flop.

11.7 Complete the following timing diagram for the flip-flop of Figure 11-20(a).

cok) f L PP LT LT

11.8 Complete the following diagrams for the falling-edge-triggered D-CE flip-flop of
Figure 11-27(c). Assume Q begins at 1.
(a) First draw Q based on your understanding of the behavior of a D flip-flop with
clock enable.

Clock | I e O
Dy [ ] [ ]
el | | I [ 1

(b) Now draw in the internal signal D from Figure 11-27(c), and confirm that this
gives the same Q as in (a).

11.9 (a) Complete the following timing diagram for a J-K flip-flop with a falling-edge
trigger and asynchronous CIrN and PreN inputs.

CIrN |

PreN —l |
I
|
|
|
|
I
I
|
|
I

J

K

Clock
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(b) Complete the timing diagram for the following circuit. Note that the Ck inputs
on the two flip-flops are different.

| CIrN | | |
o1 O
Clock
—e—q CLR /
CIrN I
Ck D, 0, 1
|
Q| |
Clock

11.10 Convert by adding external gates:
(a) a D flip-flop to a J-K flip-tlop.
(b) aT flip-flop to a D flip-tlop.
(c) aT flip-flop to a D flip-flop with clock enable.

11.11 Complete the following timing diagram for an S-R latch. Assume Q begins at 1.

s M
. ] 1

0

11.12 Using a truth table similar to Figure 11-8(b), confirm that each of these circuits is an
S-R latch. What happens when § = R = 1 for each circuit?

0— 01
)

1— 10 0
11 0’

S R
a) (b)

11.13 An AB latch operates as follows: If A =0 and B = 0, the latch state is Q = 0; if

either A = 1 or B = 1 (but not both), the latch output does not change; and when

both A = 1 and B = 1, the latch state is Q = 1.

(a) Construct the state table and derive the characteristic equation for this AB latch.

(b) Derive a circuit for the AB latch that has four two-input NAND gates and two
inverters.

(¢) Inyour circuit of Part (b), are there any transitions between input combinations
that might cause unreliable operation? Verify your answer.
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(d) In your circuit of Part (b), is there a gate output that provides the signal Q'?
Verify your answer.

(e) Derive a circuit for the AB latch using four two-input NOR gates and two
inverters.

(f) Answer Parts (c) and (d) for your circuit of Part (e).

11.14 (a) Construct a state table for this circuit and identify the stable states of the circuit.
(b) Derive a Boolean algebra equation for the next value of the output Q in terms
of O, A and B.
(c) Analyze the behavior of the circuit. Is it a useful circuit? If not, explain why not;
if yes, explain what it does.

0 ————>{ 11 5,
2-to-1 Y >0
>| 10 MUX
S
A—>o *
> 11 2-to-1
1 >| 10 MUX ¥
S
. A

11.15 The following circuit is intended to be a gated latch circuit where the signal G is

the gate.

(a) Derive the next-state equation for this circuit using Q as the state variable and
P as an output.

(b) Construct the state table and output table for the circuit. Circle the stable states
of the circuit.

(c) Are there any restrictions on the allowable input combinations on M and N?
Explain your answer.

(d) Is the output P usable as the complement of Q? Verify your answer.

(e) Assume that Gate 1 has a propagation delay of 30 ns and Gates 2, 3, and 4 have
propagation delays of 10 ns. Construct a timing diagram for the circuit for the
following input change: M = N = Q = 0 with G changing from 1 to 0.

AT T D
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11.16 Analyze the latch circuit shown.

(a) Derive the next-state equation for this circuit using Q as the state variable and
P as an output.

(b) Construct the state table and output table for the circuit. Circle the stable states
of the circuit.

(c) Are there any restrictions on the allowable input combinations on A and B?
Explain your answer.

(d) Is the output P usable as the complement of Q? Verify your answer.

2—3—QFQ
b

11.17 Derive the characteristic equations for the following latches and flip-flops in product-
of-sums form.
(a) S-Rlatch or flip-flop
(b) Gated D latch
(c) D flip-flop
(d) D-CE flip-flop
(e) J-K flip-flop
(f) T flip-flop

11.18 Complete the following timing diagrams for a gated D latch. Assume Q begins at 0.
(a) First draw Q based on your understanding of the behavior of a gated D latch.

(b) Now draw in the internal signals S and R from Figure 11-11, and confirm that
S and R give the same value for Q as in (a).
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11.19 Complete the following diagrams for the rising-edge-triggered D flip-flop of Figure
11-15. Assume Q begins at 1.
(a) First draw Q based on your understanding of the behavior of a D flip-flop.

coel [ ] [ ] [ 1 [
ol 1 [ ] [ 1

Q

(b) Now draw in the internal signal P from Figure 11-15, and confirm that P gives
the same Q as in (a).

11.20 A set-dominant flip-flop is similar to the reset-dominant flip-flop of Problem 11.6
except that the input combination S = R = 1 sets the flip-flop. Repeat Problem 11.6
for a set-dominant flip-flop.

11.21 Fill in the timing diagram for a falling-edge-triggered S-R flip-flop. Assume Q
begins at 0.

cock] | | | L[]

R I_l

11.22 Fill in the timing diagram for a falling-edge-triggered J-K flip-flop.
(a) Assume Q begins at 0.

cock| | ) [} [ [ ][]
J [ I .
K [1 [1

0

(b) Assume Q begins at 1, but Clock, /, and K are the same.
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11.23 (a) Find the input for a rising-edge-triggered D flip-flop that would produce the

output Q as shown. Fill in the timing diagram.
(b) Repeat for a rising-edge-triggered T flip-flop.

cockl | | PP P T T ]
0 [ 1 [

D

T

11.24 Here is the diagram of a 3-bit ripple counter. Assume Q, = Q, = Q, = 0att = 0,and
assume each flip-flop has a delay of 1 ns from the clock input to the Q output. Fill in
Qo, O, and Q, of the timing diagram. Flip-flop Q, will be triggered when Q, changes

from O to 1.
[ ] [ ] |
Qo 0 ()
T T T
Clock —— [ L] [ L [

cock] [ | [} T 11 [ 1

Q

0

Ol |
5 10 15 20 25 30 35 40 45 50

11.25 Fill in the following timing diagram for a rising-edge-triggered T flip-flop with an
asychronous active-low PreN input. Assume Q begins at 1.

cock| | )} I L [ 0 [ @ [ 1
PreN || ||

0

11.26 The CIrN and PreN inputs introduced in Section 11.8 are called asynchronous
because they operate independently of the clock (i.e., they are not synchronized
with the clock). We can also make flip-flops with synchronous clears or preset
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inputs. A D-flip-flop with an active-low synchronous CIrN input may be construct-
ed from a regular D flip-flop as follows.

D —] o
CIrN —|

Clk —

Fill in the timing diagram. For Q,, assume a synchronous CIrN as above, and for Q,,
assume an asynchronous CIrN as in Section 11.8. Assume Q; = O, = 0 at the beginning.

cok) { | 1 | [ LT [
CIrN | | [ |

D

0

0,

11.27 (a) Construct a D flip-flop using an inverter and an S-R flip-flop.
(b) If the propagation delay and setup time of the S-R flip-flop in (a) are 2.5 ns and
1.5 ns, respectively, and if the inverter has a propagation delay of 1 ns, what are
the propagation delay and setup time of the D flip-flop of Part (a)?

11.28 Redesign the debouncing circuit of Figure 11-9 using the S-R latch of Figure 11-10.

Programmed Exercise 11.29

Cover the bottom part of each page with a sheet of paper and slide it down as you
check your answers.

The internal logic diagram of a falling-edge-triggered D flip-flop follows. This
flip-flop consists of two basic S-R latches with added gates. When the clock input
(CK) is 1, the value of D is stored in the first S-R latch (P). When the clock changes
from 1 to 0, the value of P is transferred to the output latch (Q). Thus, the opera-
tion is similar to that of the master-slave S-R flip-flop shown in Figure 11-19, except
for the edges at which the data is stored.

|
D ——[>o— 0

CK
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In this exercise you will be asked to analyze the operation of the D flip-flop
shown above by filling in a table showing the values of CK, D, P, S, R, and Q after
each change of input. It will be helpful if you mark the changes in these values on the
circuit diagram as you trace the signals. Initially, assume the following signal values:
CK D P S R Q
0 0 0 0 1 0 (stable)
Verify by tracing signals through the circuit that this is a stable condition of the circuit;
that is, no change will occur in P, S, R, or Q. Now assume that CK is changed to 1:
CK D P S R Q
1. 0 0 0 0 1 0 (stable)
2. 1 o 0 0 1 o0 ?
3.
Trace the change in CK through the circuit to see if a change in P, S, or R will occur. If
a change does occur, mark row 2 of the preceding table “unstable” and enter the new
values in row 3.
Answer: 2. 1 0 0 0 1 0 (unstable)
3. 1 0 0 0 0 0 (stable)
4. 1 1 0 0 0 0 (unstable)
5. 1 1 ?
Verity that row 3 is stable; that is, by tracing signals show that no further change in
P, S, R,or Q will occur. Next D is changed to 1 as shown in row 4. Verify that row 4
is unstable, fill in the new values in row 5, and indicate if row 5 is stable or unstable.
Answer: CK D P S R O
5 1 1 1 0 0 0 (stable)
6 0 1 1 0 0 0 ?
7 0 1 ?
8 0 1
Then CK is changed to 0 (row 6). If row 6 is unstable, indicate the new value of S in
row 7. If row 7 is unstable, indicate the new value of Q in row 8. Then determine
whether row 8 is stable or not.
Answer: CK D P S R QO
7. 0 1 1 1 0 0 (unstable)
8 0 1 1 1 0 1 (stable)
9. 0 0 (stable)
10. 1 0
11. 1 0
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Next, D is changed back to 0 (row 9). Fill in the values in row 9 and verify that it is
stable. CK is changed to 1 in row 10. If row 10 is unstable, fill in row 11 and indicate
whether it is stable or not.

Answer: 9. 0 0 1 1 0 1 (stable)
10. 1 0 1 1 0 1 (unstable)
1. 1 0 0 0 0 1 (stable)
12. 0 0
13. 0 0
14. 0 0

CK is changed back to 0 in row 12. Complete the rest of the table.

Answer:  12. 0 0 0 0 O 1 (unstable)
13. 0 0 0 0 1 1 (unstable)
14. 0 0 0 0 1 0 (stable)

Using the previous results, plot P and Q on the following timing diagram. Verify that
your answer is consistent with the description of the flip-flop operation given in the
first paragraph of this exercise.

Row 2 4 6 8 10 12
| |
[ [
| |

CK

D

0

[
\
\
P \
I
\
\
[

Answer: Row 2 4 6 8 10 12
| \
\ \
| |

CK

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.n:

Registers and Counters

Objectives

1. Explain the operation of registers. Show how to transfer data between
registers using a tri-state bus.

2. Explain the operation of shift registers, show how to build them using
flip-flops, and analyze their operation. Construct a timing diagram for a
shift register.

3. Explain the operation of binary counters, show how to build them using
flip-flops and gates, and analyze their operation.

4. Given the present state and desired next state of a flip-flop, determine
the required flip-flop inputs.

5. Given the desired counting sequence for a counter, derive the flip-flop
input equations.

6. Explain the procedures used for deriving flip-flop input equations.

7. Construct a timing diagram for a counter by tracing signals through the
circuit.

348
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Study Guide

1. Study Section 12.1, Registers and Register Transfers.
(a) For the diagram of Figure 12-4, suppose registers A, B, C, and D hold the
8-bit binary numbers representing 91, 70, 249, and 118, respectively.
Suppose G and H are both initially 0. What are the contents of G and H
(decimal equivalent) after the rising edge of the clock:

(1) if EF =10, LdG = 0,and LdH =1 at the rising edge?

(2) if EF =01, LdG = 0,and LdH =1 at the next rising edge?
(3) if EF=11,LdG = 1,and LdH =1 at the next rising edge?
(4) if EF =00, LdG = 1,and LdH = 0 at the next rising edge?
(5) if EF =10, LdG = 0,and LdH = 0 at the next rising edge?

(b) Work Problem 12.1.
2. Study Section 12.2, Shift Registers.

(a) Compare the block diagrams for the shift registers of Figures 12-7 and
12-10. Which one changes state on the rising edge of the clock pulse? The
falling edge?

(b) Complete the following table and timing diagram (see next page) for the
shift register of Figure 12-8.

Clock State of Shift Register

Cycle When Clock = 1
Number Q; Qs Qs Q4 Qs Q; Q; Qo
0 0 0 0 0 0 0 0
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clock | 1

SI

SO

(c) Explain in words the function of the MUX on the D input of flip-flop
Qj; in Figure 12-10(b). Explain in words the meaning of the first of
Equations (12-1).

(d) Verify that Equations (12-1) are consistent with Table 12-1.
(e) Work Problem 12.2.

3. Study Section 12.3, Design of Binary Counters, and Section 12.4, Counters for
Other Sequences.

(a) For Figure 12-13,if CBA = 101, which of the T inputs is 1?

(b) Complete the following timing diagram for the binary counter of Figure
12-13. The initial value of Clock is 1; this does not count as a rising edge.

\ \ \ \ \ \ \ \

C 0 | 0 | 0 | 0 | | | | I
| | | [ I I I I

| | | | | |

Bl 0 | 0 | o 1 | \ \ \ \
\ I I I I I

\ \ \ \ \ \

Al 0 | 1 \-l 0 \l 1 \-l \ \ \ \
| | | | | | |

Te | | \| \| | | | |
~ L L L | | | | |
- \ \ | | | |
Tp ‘ | 1 | ‘ | 1 | 1 1 1 1
I T I T T T T T

. ; ; ; | | | | |
Ty \ \ [ [ [ [ [ [
I I I I I I I I

(c) Using the results of (b), draw a state graph for this binary counter
(similar to Figure 12-21).
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Complete the following timing diagram for the binary counter of Figure 12-15.

k| 1 T T 1T 1T 111 [
\ \ \ \ \ \ \ \
cpL o o o o | | | | |
\ \ \ \ \ \ \ \
sl oo oo ([T | | | |
\ | \ \ \ \ \ \
o Crle i
\ \ \ \ \ \ \ \
el
Dy 1 1 | | | |
S
Dy A | | | | | | |
T T T T T T T T

Use Table 12-4 to verify that the values of T, T3, and T4 in Table 12-2 are
correct.

What happens if the circuit of Figure 12-23 is started in one of the don’t-care
states and, then, a clock pulse occurs? In particular, augment the state graph
of Figure 12-25 to indicate the result for starting in states 101 and 110.

What happens if the circuit of Figure 12-26 is started in one of the don’t-care
states and then a clock pulse occurs? In particular, augment the state graph

of Figure 12-21 to indicate the result for starting in states 001, 101, and 110.

Work Problems 12.3,12.4,12.5,12.6, and 12.7.

Study Section 12.5, Counter Design Using S-R and J-K Flip-Flops.

()

Referring to Table 12-5(c):
If Q = Q" = 0, explain in words why R is a don’t-care.

If Q = Q" =1, explain in words why S is a don’t-care.

If 0 = 0and Q" = 1, what value should S have and why?

If 0 =1 and Q" = 0, what value should R have and why?
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(b) For Figure 12-27, verify that the Rz and Sz maps are consistent with the B*
map, and verify that the R, and S, maps are consistent with the C* map.

(c) In Figure 12-27, where do the gate inputs (C, B, A, etc.) come from?

(d) For Figure 12-27(c), which flip-flop inputs will be 1 if CBA = 100? What
will be the state after the rising clock edge?

(e) Complete the following state graph by tracing signals in Figure 12-27(c).
Compare your answer with Figure 12-21. What will happen if the counter
is in state 110 and a clock pulse occurs?

(f) Referring to Table 12-7(c).
If 0 = Q" = 0, explain in words why K is a don’t-care.

If O = Q" = 1, explain in words why J is a don’t-care.

If Q = 0and Q" = 1, explain why both JK = 10 and JK = 11 will produce
the required state change.

If Q =1and Q" =0, give two sets of values for J and K which will pro-
duce the required state change, and explain why your answer is valid.

(g) Verity that the maps of Figure 12-28(b) can be derived from the maps of
Figure 12-28(a).

(h) Compare the number of logic gates in Figures 12-27 and 12-28. The J-K
realization requires fewer gates than the S-R realization because the J-K
maps have more don’t-cares than the S-R maps.

(i) Draw in the implied feedback connections on the circuit of Figure 12-28(c).

(j) By tracing signals through the circuit, verify that the state sequence for
Figure 12-28(c) is correct.
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(k) Find a minimum expression for F, and for F,. (Hint: No variables are required.)

A A
BN 01 BON 01
00 X X 00 X X
01 1 X 01 0 X
11 X 1 11 X X
1l X X 0] X X
Fy Fy

() Work Problems 12.8 and 12.9.

5. Study Section 12.6, Derivation of Flip-Flop Input Equations—Summary.

(a) Make sure that you know how to derive input equations for the different
types of flip-flops. It is important that you understand the procedures for
deriving the equations; merely memorizing the rules is not sufficient.

(b) Table 12-9 is provided mainly for reference. It is not intended that you memo-
rize this table; instead you should understand the reasons for the entries in the
table. If you understand the reasons why a given map entry is 0, 1, or X, you
should be able to derive the flip-flop input maps without reference to a table.

6. Work the part of Problem 12.10 that you have been assigned. Bring your solu-
tion to this problem with you when you come to take the readiness test.

Registers and Counters

A register consists of a group of flip-flops with a common clock input. Registers are
commonly used to store and shift binary data. Counters are another simple type of
sequential circuits. A counter is usually constructed from two or more flip-flops which
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change states in a prescribed sequence when input pulses are received. In this unit,

you will learn procedures for deriving flip-flop input equations for counters. These
procedures will be applied to more general types of sequential circuits in later units.

12.1 Registers and Register Transfers

Several D flip-flops may be grouped together with a common clock to form a register
[Figure 12-1(a)]. Because each flip-flop can store one bit of information, this register can
store four bits of information. This register has a load signal that is ANDed with the clock.

FIGURE 12-1 Data out
4-Bit D Flip-Flop
. . 0—1 0—1 0—0 0—1
Registers with | | | |
Data, Load, > 0 0 0
Clear, and - O - ? ol ‘ o 0
Clock Inputs ! ! ' -
P D; D, D, Dy
(o] (0] (0]
CIrN o o ,
Load — \
Clk — J
1 1 0 1
Data in
(a) Using gated clock
Data out
0—1 0—1 0—0 0—1
03 (0} 0, Qo
—q Clr —dClIr —q Clr —q Clr
CE Dy CE D, CE D, CE Dy
(0] (0] O
Load | | | I
CIrN
Clk
1 1 0 1
Data in
(b) With clock enable

y

CIrN —q ClIr
CE D
IR
Load CIk
(c) Symbol

Downloaded From : www.EasyEngineering.net



Downloaded From : www.EasyEngineering.net

Registers and Counters 355

When Load = 0, the register is not clocked, and it holds its present value. When it is time
to load data into the register, Load is set to 1 for one clock period. When Load = 1, the
clock signal (CIk) is transmitted to the flip-flop clock inputs and the data applied to the
D inputs will be loaded into the flip-flops on the falling edge of the clock. For example, if
the Q outputs are 0000 ( Qs = Q, = Q; = O, = 0) and the data inputs are 1101 (D; = 1,
D,=1,D,=0and D, = 1), after the falling edge Q will change from 0000 to 1101 as
indicated. (The notation 0 — 1 at the flip-flop outputs indicates a change from 0 to 1.)

The flip-flops in the register have asynchronous clear inputs that are connected
to a common clear signal, CIrN. The bubble at the clear inputs indicates that a logic
0 is required to clear the flip-flops. CIrN is normally 1, and if it is changed momen-
tarily to 0, the Q outputs of all four flip-flops will become 0.

As discussed in Section 11.8, gating the clock with another signal can cause timing
problems. If flip-flops with clock enable are available, the register can be designed
as shown in Figure 12-1(b). The load signal is connected to all four CE inputs. When
Load = 0, the clock is disabled and the register holds its data. When Load is 1, the
clock is enabled, and the data applied to the D inputs will be loaded into the flip-flops,
following the falling edge of the clock. Figure 12-1(c) shows a symbol for the 4-bit reg-
ister using bus notation for the D inputs and Q outputs. A group of wires that perform
a common function is often referred to as a bus. A heavy line is used to represent a
bus, and a slash with a number beside it indicates the number of bits in the bus.

Transferring data between registers is a common operation in digital systems.
Figure 12-2 shows how data can be transferred from the output of one of two regis-
ters into a third register using tri-state buffers. If En = 1 and Load = 1, the output of
register A is enabled onto the tri-state bus and the data in register A will be stored in
Q after the rising edge of the clock. If En = 0 and Load = 1, the output of register B
will be enabled onto the tri-state bus and stored in Q after the rising edge of the clock.

FIGURE 12-2 Tri-State Bus
Data Transfer — A /
Bet\{veen Register FF
Registers Register A = A
Flip-flops A; and A,  En
— A 4[} D, |0
-P; FF —> FF
Register B = — CE
Flip-flops B, and B, Register
— B _$ )
Register FF D, —
Register Q = B > FF
Flip-flops Q; and O, CE
i
FF Clk
Load

Figure 12-3(a) shows an integrated circuit register that contains eight D flip-
flops with tri-state buffers at the flip-flop outputs. These buffers are enabled when
En = 0. A symbol for this 8-bit register is shown in Figure 12-3(b).

Figure 12-4 shows how data can be transferred from one of four 8-bit registers into
one of two other registers. Registers A, B, C,and D are of the type shown in Figure 12-3.
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FIGURE 12-3
Logic Diagram for En
8-Bit Register with | | | 8 i
QI oo Q7 QS

Tri-State Output 0, ] 0
En—q
Clock l l l | st
CK
D, D, D, Dyg (b
(@)
FIGURE 12-4 Reei Reai
Data Transfer Using egéswr e“’}_IISter
a Tri-State Bus CE CE
LdG — o] b—=ciock  Lan— ] T— Clock
Bus
[ I ‘1 ‘1
- Register . Register S Register - Register
EnA ’—C A EnB Ij B L/l(l,—|—@ C EnD |—@ D
f: Decoder

The outputs from these registers are all connected in parallel to a common tri-state bus.
Registers G and H are similar to the register of Figure 12-1 except that they have eight
flip-flops instead of four. The flip-flop inputs of registers G and H are also connected to
the bus. When EnA = 0, the tri-state outputs of register A are enabled onto the bus. If
LdG = 1, these signals on the bus are loaded into register G after the rising clock edge
(or into register H if LdH = 1). Similarly, the data in register B, C, or D is transferred
to G (or H) when EnB, EnC, or EnD is 0, respectively and LdG =1 (or LdH = 1). If
LdG = LdH = 1,both G and H will be loaded from the bus. The four enable signals may
be generated by a decoder. The operation can be summarized as follows:

If EF = 00, A is stored in G (or H).
It EF =01, Bis stored in G (or H).
If EF = 10, Cis stored in G (or H).
It EF =11, D is stored in G (or H).
Note that 8 bits of data are transferred in parallel from register A, B, C, or D to reg-

ister G or H. As an alternative to using a bus with tri-state logic, eight 4-to-1 multi-
plexers could be used, but this would lead to a more complex circuit.

Parallel Adder with Accumulator

In computer circuits, it is frequently desirable to store one number in a register of
flip-flops (called an accumulator) and add a second number to it, leaving the result
stored in the accumulator. One way to build a parallel adder with an accumulator
is to add a register to the adder of Figure 4-2, resulting in the circuit of Figure 12-5.
Suppose that the number X = x,...xx; is stored in the accumulator. Then, the
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FIGURE 12-5 n-Bit Parallel Adder with Accumulator

“n i X2 X

| | | |
o’ 0 o’ 0 o’ 0 o’ 0
Accumulator
eee — pa—e —a -
Register
CE D CE D CE D CE D
| l l | "
CLK
CIrN
5, X, 5, X; 5 Xy 5 X
—| Full —| Full ~| Full —| Full
-] Adder | ... « | Adder [ ... « | Adder Adder
- -

.\VH \I \2 »\' 1

number Y =y, ...y, is applied to the full adder inputs, and after the carry has prop-
agated through the adders, the sum of X and Y appears at the adder outputs. An add
signal (Ad) is used to load the adder outputs into the accumulator flip-flops on the
rising clock edge. If s; = 1, the next state of flip-flop x; will be 1. If 5; = 0, the next state
of flip-flop x; will be 0. Thus, x;” = s;, and if Ad = 1, the number X in the accumulator
is replaced with the sum of X and Y, following the rising edge of the clock.

Observe that the adder with accumulator is an iterative structure that consists of
a number of identical cells. Each cell contains a full adder and an associated accu-
mulator flip-flop. Cell i, which has inputs ¢; and y; and outputs ¢; , | and x;, is referred
to as a typical cell.

Before addition can take place, the accumulator must be loaded with X. This can
be accomplished in several ways. The easiest way is to first clear the accumulator using
the asynchronous clear inputs on the flip-flops, and then put the X data on the Y inputs
to the adder and add to the accumulator in the normal way. Alternatively, we could add
multiplexers at the accumulator inputs so that we could select either the Y input data
or the adder output to load into the accumulator. This would eliminate the extra step
of clearing the accumulator but would add to the hardware complexity. Figure 12-6

FIGURE 12-6 x;
Adder Cell with |
Multiplexer 0
ceE K p
Ad J
Ld
SR
S;
Cit FA &
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shows a typical cell of the adder where the accumulator flip-flop can either be loaded
directly from y; or from the sum output (s;). When Ld = 1 the multiplexer selects y;, and
y; is loaded into the accumulator flip-flop (x;) on the rising clock edge. When Ad = 1
and Ld = 0, the adder output (s;) is loaded into x;. The Ad and Ld signals are ORed
together to enable the clock when either addition or loading occurs. When Ad = Ld = 0,
the clock is disabled and the accumulator outputs do not change.

12.2 Shift Registers

A shift register is a register in which binary data can be stored, and this data can be
shifted to the left or right when a shift signal is applied. Bits shifted out one end of the
register may be lost, or if the shift register is of cyclic type, bits shifted out one end are
shifted back in the other end. Figure 12-7(a) illustrates a 4-bit right-shift register with
serial input and output constructed from D flip-flops. When Shift = 1, the clock is
enabled and shifting occurs on the rising clock edge. When Shift = 0, no shifting
occurs and the data in the register is unchanged. The serial input (SI) is loaded into
the first flip-flop (Q5) by the rising edge of the clock. At the same time, the output of

FIGURE 12-7 |

L | .
Right-Shift Sté;‘}l)m—l— D; 0, D, 0 D, 0 D, 0y SL(rga(l);)ut
Register
’, CE ’, CE ’, CE ’, CE
Shift : 5 :
Clock

(a) Flip-flop connections

Clock | | | L

SI

TR
0

—
oI

(b) Timing diagram
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the first flip-flop is loaded into the second flip-flop, the output of the second flip-flop
is loaded into the third flip-flop, and the output of the third flip-flop is loaded into the
last flip-flop. Because of the propagation delay of the flip-flops, the output value
loaded into each flip-flop is the value before the rising clock edge. Figure 12-7(b) illus-
trates the timing when the shift register initially contains 0101 and the serial input
sequence is 1, 1,0, 1.The sequence of shift register states is 0101, 1010, 1101,0110, 1011.

If we connect the serial output to the serial input, as shown by the dashed line, the
resulting cyclic shift register performs an end-around shift. If the initial contents of the
register is 0111, after one clock cycle the contents is 1011. After a second pulse, the state
is 1101, then 1110, and the fourth pulse returns the register to the initial 0111 state.

Shift registers with 4, 8, or more flip-flops are available in integrated circuit
form. Figure 12-8 illustrates an 8-bit serial-in, serial-out shift register. Serial in means
that data is shifted into the first flip-flop one bit at a time, and the flip-flops cannot
be loaded in parallel. Serial out means that data can only be read out of the last flip-
flop and the outputs from the other flip-flops are not connected to terminals of the
integrated circuit. The inputs to the first flip-flop are S = SI and R = SI'. Thus, if
SI =1, a 1 is shifted into the register when it is clocked, and if SI = 0, a 0 is shifted
in. Figure 12-9 shows a typical timing diagram.

Figure 12-10(a) shows a 4-bit parallel-in, parallel-out shift register. Parallel-
in implies that all four bits can be loaded at the same time, and parallel-out

FIGURE 12-8 8-Bit Serial-in, Serial-out Shift Register

SI 8-Bit Serial-In, Serial-Out SO
(Serial in) Shift Register (Serial out)
Clock

(a) Block diagram
Q7 Qo

SI S oS OFS OF—4S oS OF—4S oS OF—4S O0F=SO
(Serial in) (Serial out)

R Q'*‘:R Q'*‘:R Q'*‘:R Q'*‘:R Q'*‘:R Q’*‘:R Q’*‘:R Q’
CLK : : : : ‘ ‘ :

(b) Logic diagram

| | |
[«——7 Clock Periods—>

FIGURE 12-9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Diagram for _— | |
Shift Register of SI |':—| | Lo | |
Figure 12-8 : : : : : :
I I I
I | I

| |
o) [«——7 Clock Periods— |
| |
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FIGURE 12-10 Parallel Output
Parallel-in,
Parallel-Out 0 0y O Oy
Right Shift T T T T—» SO (Serial Out)
Register SI(Serial In) —>] .
Sh(Shift Enable) —] 4"19)1;; lalfgﬂghtln
L(Load [ncdlzlsﬁ : Shift Register
Dy D, Dy D,
N
Parallel Input
(a) Block diagram
Qo
D 0 J
(b) Implementation using flip-flops and MUXes
implies that all bits can be read out at the same time. The shift register has two
control inputs, shift enable (S4) and load enable (L). If Sh =1 (and L =1 or
L = 0), clocking the register causes the serial input (SI) to be shifted into the first
flip-flop, while the data in flip-flops QOs, O,, and Q, are shifted right. If S = 0 and
L =1, clocking the shift register will cause the four data inputs (D3, D,, Dy, D)
to be loaded in parallel into the flip-flops. If S&# = L = 0, clocking the register
causes no change of state. Table 12-1 summarizes the operation of this shift reg-
ister. All state changes occur immediately following the falling edge of the clock.
The shift register can be implemented using MUXes and D flip-flops, as shown
in Figure 12-10(b). For the first flip-flop, when Sh = L = 0, the flip-flop Q5 output is
selected by the MUX, so Q;" = Q5 and no state change occurs. When Sh = 0 and
L = 1, the data input Dj is selected and loaded into the flip-flop. When Sk = 1 and
TABLE 12-1 Inputs Next State
Shift Register Sh (Shift) L (Load) Q" Q7 OF Qpf Action
Operation 0 0 Q; Q Q@ Q No change
0 1 D D, D, D, Load
1 X Sl Q; Q Q, Right shift
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L =0or 1, Sl is selected and loaded into the flip-flop. The second MUX selects Q,,
D,, or O3, etc. The next-state equations for the flip-flops are

0," = Sh'-L"-Q; + Sh'-L-D; + Sh-SI (12-1)
0," = Sh'-L"-Q, + Sh'-L-D, + Sh-Qs
0," =Sh'-L"-Q, + Sh'-L-D, + Sh-Q,
Oy = Sh'-L'-Qqy + SK'-L-D, + Sh-Q,

A typical application of this register is the conversion of parallel data to serial
data. The output from the last flip-flop (Q,) serves as a serial output as well as one
of the parallel outputs. Figure 12-11 shows a typical timing diagram. The first clock
pulse loads data into the shift register in parallel. During the next four clock pulses,
this data is available at the serial output. Assuming that the register is initially clear
(030,0,0, = 0000), that the serial input is SI = 0 throughout, and that the data
inputs D;D,D D, are 1011 during the load time (), the resulting waveforms are as
shown. Shifting occurs at the end of ¢, f,, and £, and the serial output can be read dur-
ing these clock times. During t,, Sh = L = 0, so no state change occurs.

Figure 12-12(a) shows a 3-bit shift register with the Q| output from the last flip-
flop fed back into the D input of the first flip-flop. If the initial state of the register
is 000, the initial value of D5 is 1, so after the first clock pulse, the register state is
100. Successive states are shown on the state graph of Figure 12-12(b). When the

FIGURE 12-11
Timing Diagram for Clock I I e O e I
Shift Register ' ' ' ! ! '
L (Load) : : : : : :
I | | | | |
Sh (Shift) [| ! ! L ! !
| | | | |
D3, Dy, D, [ | | | | |
| ! | | | [
05 [ o 1o 1 o !
| | | | |
Q) 0 | | I | o I 0 | I
I I T I I I
| | | |
0, I | 1 | 0 |1 | 1 | 0 | I
| I | I | |
~ I |l |l I |l |l
Q9 © 1|t 1t qlo a1 @
v o o T U Ty T

FIGURE 12-12
Shift Register

with Inverted @ @ @
— D3 Q3 D, 0, Dy ©,

Feedback '
— 05 r 05 r 01 @ @ @
- (1)

(a) Flip-flop connections (b) State graph

CLK
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register is in state 001, D5 is 0, and the next register state is 000. Then, successive
clock pulses take the register around the loop again. Note that states 010 and 101
are not in the main loop. If the register is in state 010, then a shift pulse takes it to
101 and vice versa; therefore, we have a secondary loop on the state graph. A circuit
that cycles through a fixed sequence of states is called a counter, and a shift register
with inverted feed back is often called a Johnson counter.

12.3 Design of Binary Counters

The counters discussed in this chapter are all synchronous counters. This means the
operation of the flip-flops is synchronized by a common clock pulse so that when
several flip-flops must change state, the state changes occur simultaneously. Ripple
counters, in which the state change of one flip-flop triggers the next flip-flop in line,
are not discussed in this text.

We will first construct a binary counter using three T flip-flops to count clock pulses
(Figure 12-13). We will assume that all the flip-flops change state a short time following
the rising edge of the input pulse. The state of the counter is determined by the states
of the individual flip-flops; for example, if flip-flop C is in state 0, B in state 1, and A in
state 1, the state of the counter is 011. Initially, assume that all flip-flops are set to the 0
state. When a clock pulse is received, the counter will change to state 001; when a sec-
ond pulse is received, the state will change to 010, etc. The sequence of flip-flop states
is CBA = 000, 001, 010, 011, 100, 101, 110, 111, 000, . .. Note that when the counter
reaches state 111, the next pulse resets it to the 000 state, and then the sequence repeats.

First, we will design the counter by inspection of the counting sequence; then, we will
use a systematic procedure which can be generalized to other types of counters. The
problem is to determine the flip-flop inputs—7, T, and T 4. From the preceding count-
ing sequence, observe that A changes state every time a clock pulse is received. Because
A changes state on every rising clock edge, 7, must equal 1. Next, observe that B
changes state only if A = 1. Therefore, A is connected to 7 as shown, so thatif A =1,
B will change state when a rising clock edge occurs. Similarly, C changes state when a
rising clock edge occurs only if B and A are both 1. Therefore, an AND gate is connected
to T so that C will change state if B =1 and A = 1 when a rising clock edge occurs.

FIGURE 12-13 |
Synchronous - -
Binary Counter ¢ ¢ B B A A
Tc Ty Ty

Clock
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TABLE 12-2 Present State Next State Flip-Flop Inputs
State Table C B A ¢t BT AT Tc Tg Ta
forBinary 9 o o 0o 0 1 0 0 1
Counter o o 1 o 1 0 0 1 1
0o 1 0 0 1 1 0o 0 1
0o 1 1 1 0 o0 1 1 1
1 0 O 1 0 1 0o 0 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 (V] 1
1T 1 1 0 0 0 1 1 1

Now, we will verify that the circuit of Figure 12-13 counts properly by tracing sig-
nals through the circuit. Initially, CBA = 000,so only 7, is 1 and the state will change
to 001 when the first active clock edge arrives. Then, T = T, = 1, and the state will
change to 010 when the second active clock arrives. This process continues until final-
ly when state 111 isreached, T = Ty = T, = 1, and all flip-flops return to the 0 state.

Next, we will redesign the binary counter by using a state table (Table 12-2). This
table shows the present state of flip-flops C, B, and A (before a clock pulse is
received) and the corresponding next state (after the clock pulse is received). For
example, if the flip-flops are in state CBA = 011 and a clock pulse is received, the next
state will be C*B*A™ = 100. Although the clock is not explicit in the table, it is under-
stood to be the input that causes the counter to go to the next state in sequence. A
third column in the table is used to derive the inputs for 7, T, and T,. Whenever the
entries in the A and A* columns differ, flip-flop A must change state and 7, must be
1. Similarly, if B and B* differ, B must change state so Tz must be 1. For example, if
CBA = 011,C*B"A™" = 100, all three flip-flops must change state,so T-T3T, = 111.

Tc, T, and T4 are now derived from the table as functions of C, B, and A. By
inspection, 7, = 1. Figure 12-14 shows the Karnaugh maps for 7. and T, from
which T- = BA and Ty = A. These equations yield the same circuit derived previ-
ously for Figure 12-13.

Next, we will redesign the binary counter to use D flip-flops instead of T flip-
flops. The easiest way to do this is to convert each D flip-flop to a T flip-flop by
adding an XOR (exclusive-OR) gate, as shown in Figure 11-24(b). Figure 12-15

FIGURE 12-14 C C
Karnaugh Maps BA 0 ! BA 0 I
for Binary Counter

00] 0 0 00f o 0

01 0 0 01 1 1

10 0 0 10] 0 0
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FIGURE 12-15
Binary Counter | 1
with D Flip-Flops c’ c B’ B A A
D D D
@ |
Clock
shows the resulting counter circuit. The rightmost XOR gate can be replaced with
an inverter because A @ 1 = A'.
We can also derive the D flip-flop inputs for the binary counter starting with
its state table (Table 12-2). For a D flip-flop, Q© = D. By inspection of the table,
Q4" =A',soD, = A'.The maps for Q" and Q" are plotted in Figure 12-16. The
D input equations derived from the maps are
D,=A"=A
Dy,=B*"=BA'"+BA=B ® A (12-2)
D-=C"=C'BA+ CB' +CA'=C'BA+ C(BA) =C ® BA

which give the same logic circuit as was obtained by inspection.

Next, we will analyze an up-down binary counter. The state graph and table
for an up-down counter are shown in Figure 12-17. When U = 1, the counter
counts up in the sequence 000, 001, 010, 011, 100, 101, 110, 111, 000 . .. When
D = 1, the counter counts down in the sequence 000, 111, 110, 101, 100, 011, 010,
001,000 . ..When U = D = 0, the counter state does not change,and U =D =1
is not allowed.

FIGURE 12-16 C C C

Karnaugh Maps BA 0

1
for D Flip-Flops N
0| o 1 0ol o 0 00|l 1 1
N
01 1 o1 (1 1 01
AN, C:) 010
11 @ 0 11 0 0 11 0 0
0] o m 0](1 1) 1()[1 1|
T | |
D¢ Dy Dy
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FIGURE 12-17 C'B*A*
State Graph
and Table for CBA v b
010 011 001
011 100 010
100 101 011
101 110 100
110 111 101
111 000 110
The up-down counter can be implemented using D flip-flops and gates, as shown in
Figure 12-18. The corresponding logic equations are
D,=A"=A ® (U+ D)
Dy=B"=B @ (UA + DA’)
D.=C"=C ® (UBA + DB'A")
When U = 1 and D = 0, these equations reduce to equations for a binary up count-
er (Equations (12-2)).
When U = 0 and D = 1, these equations reduce to
D,=A"=A®1=A (A changes state every clock cycle)
Dy=B" =B ® A’ (B changes state when A = 0)
D.=C"=C @ B'A’ (C changes state when B = A = 0)
FIGURE 12-18
Binary Up-Down |
Counter C’ c B’ B A A
D D D
Clock i j Clock Clock
T T T
DU
L |
D U D U
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FIGURE 12-19 ig CIrN Ld Ct | ct B* A
Loadable Counter » X 0O 0 O
. . 0
with Count Enable Ct X D. Dz D, (load)
0
1

b— CIiN
Ld —> cC B A (no change)
Present state + 1

~
O

—_ .

o o - X

(b)
(a)

By inspection of the table in Figure 12-17, we can verify that these are the correct
equations for a down counter. For every row of the table, A* = A’, so A changes
state every clock cycle. For those rows where A = 0, B* = B’. For those rows where
B=0and A =0,C"=C".

Next, we will design a loadable counter [Figure 12-19(a)]. This counter has two
control signals Ld (load) and Ct (count). When Ld = 1 binary data is loaded into
the counter on the rising clock edge, and when Ct = 1, the counter is incremented
on the rising clock edge. When Ld = Ct = 0, the counter holds its present state.
When Ld = Ct = 1, load overrides count, and data is loaded into the counter. The
counter also has an asynchronous clear input that clears the counter when CIrN is
0. Figure 12-19(b) summarizes the counter operation. All state changes occur on the
rising edge of the clock (except for the asynchronous clear).

Figure 12-20 shows how the loadable counter can be implemented using flip-
flops, MUXes, and gates. When Ld = 1, each MUX selects a D; input, and because
the output of each AND gate is 0, the output of each XOR gate is D;, which gets
stored in a flip-flop. When Ld = 0 and Ct = 1, each MUX selects one of the flip-flop
outputs (C, B, or A). The circuit then becomes equivalent to Figure 12-15, and the
counter is incremented on the rising clock edge.

The next-state equations for the counter of Figure 12-20 are

A+ = DA = (Ld"A + Ld'DAin) @ Ld'-Ct
B' =Dy = (Ld"B + Ld-Dy,) ® Ld'-Cr-A
C* = D= (Ld"-C + Ld-Dg,) ® Ld'-Cr-B-A

FIGURE 12-20

Circuit for — - ’ "
Figure 12-19 CIrN CIrN CIrN

D¢ Dy D,

h

D D
Ld ~Cin Ld B Ld A

Clk Clk Clk

Ld —| >O—ﬂ
L/

Ct —
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When Ld =0 and Ct = 1, these equations reduce to A* = A’, B" = B & A, and
C* = C ® BA, which are the equations previously derived for a 3-bit counter.

12.4 Counters for Other Sequences

In some applications, the sequence of states of a counter is not in straight binary order.
Figure 12-21 shows the state graph for such a counter. The arrows indicate the state
sequence. If this counter is started in state 000, the first clock pulse will take it to state
100, the next pulse to 111, etc. The clock pulse is implicitly understood to be the input to
the circuit and not shown on the graph. The corresponding state table for the counter is
Table 12-3. Note that the next state is unspecified for the present states 001,101,and 110.

We will design the counter specified by Table 12-3 using T flip-flops. We could
derive T, Ty, and T, directly from this table, as in the preceding example. However,
it is often more convenient to plot next-state maps showing C*, B*,and A" as func-
tions of C, B, and A, and then derive T, T, and T, from these maps. The next-state
maps in Figure 12-22(a) are easily plotted from inspection of Table 12-3. From the
first row of the table, the CBA = 000 squares on the C*, B*,and A" maps are filled
in with 1, 0, and 0, respectively. From the second row, the CBA = 001 squares on all
three maps are filled in with don’t-cares. From the third row, the CBA = 010 squares
on the C*, B, and A* maps are filled in with 0, 1, and 1, respectively. The next-state
maps can be quickly completed by continuing in this manner.

Next, we will derive the maps for the 7 inputs from the next-state maps. In the fol-
lowing discussion, the general symbol Q represents the present state of the flip-flop
(C, B, or A) under consideration, and Q" represents the next state (C*, B*,or A™) of
the same flip-flop. Given the present state of a T flip-flop (Q) and the desired next

FIGURE 12-21
State Graph for @
Counter @ @
TABLE 12-3 C B A ct BT A*
State Table for 0 0 o 1 0 o0
Figure 12.21 0 0 1 _ _ _
0O 1 0 0 1 1
0o 1 1 0O 0 O
1 0 O 1 1 1
1 0 1 - - -
1 1 0 - - -
1 1 1 0o 1 0
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FIGURE 12-22 C=0half C=1 half
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(a) Next-state maps for Table 12-3
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T-=C’B’+CB Ty=C’A+CB’ T,=C+B
(b) Derivation of T inputs

state (Q™), the T input must be 1 whenever a change of state is required. Thus, 7 = 1
whenever Q" # Q, as shown in Table 12-4.

In general, the next-state map for flip-flop Q gives Q" as a function of Q and
several other variables. The value written in each square of the map gives the value
of QF, while the value of Q is determined from the row or column headings. Given
the map for Q°, we can then form the map for T, by simply putting a 1 in each
square of the T, map for which Q™ is different from Q. Thus, to form the 7 map in
Figure 12-22(b) from the C* map in Figure 12-22(a), we place a 1 in the CBA = 000
square of T because C = 0 and C* = 1 for this square. We also place a 1 in the 111
square of T because C = 1 and C* = 0 for this square.

If we don’t care what the next state of a flip-flop is for some combination of vari-
ables, we don’t care what the flip-flop input is for that combination of variables.
Therefore, if the Q" map has a don’t-care in some square, the T;, map will have a
don’t-care in the corresponding square. Thus, the 7~ map has don’t-cares for CBA
=001, 101, and 110 because C* has don’t-cares in the corresponding squares.

TABLE 12-4
Input for

T Flip-Flop 0" @ Q
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Instead of transforming the Q" map into the T, map one square at a time, we can
divide the O map into two halves corresponding to Q = 0 and Q = 1, and transform
each half of the map. From Table 12-4, whenever Q = 0, T = Q" and whenever Q = 1,
T = (Q") . Therefore, to transform the Q" map into a T map, we copy the half for which
QO = 0 and complement the half for which Q = 1, leaving the don’t-cares unchanged.

We will apply this method to transform the C*, BY and A" maps for our counter
shown in Figure 12-22(a) into 7 maps. For the first map, C corresponds to Q (and C*
to O"), so to get the T map from the C* map, we complement the second column
(where C = 1) and leave the rest of the map unchanged. Similarly, to get 7 from B*
we complement the bottom half of the B map, and to get T, from A} we complement
the middle two rows. This yields the maps and equations of Figure 12-22(b) and the
circuit shown in Figure 12-23. The clock input is connected to the clock (CK) input
of each flip-flop so that the flip-flops can change state only in response to a clock
pulse. The gate inputs connect directly to the corresponding flip-flop outputs as indi-
cated by the dashed lines. To facilitate reading similar circuit diagrams, such con-
necting wires will be omitted in the remainder of the book.

The timing diagram of Figure 12-24, derived by tracing signals through the circuit,
verifies that the counter functions according to the state diagram of Figure 12-21; for
example, starting with CBA =000, T =1 and Tz = T, = 0. Therefore, when the
clock pulse comes along, only flip-flop C changes state, and the new state is 100. Then,
Tc=0and Ty = T4 = 1,so flip-flops B and A change state when the next clock pulse
occurs, etc. Note that the flip-flops change state following the falling clock edge.

Although the original state table for the counter (Table 12-3) is not completely
specified, the next states of states 001, 101, and 110 have been specified in the process
of completing the circuit design. For example, if the flip-flops are initially set to C = 0,
B =0, and A = 1, tracing signals through the circuit shows that 7. = T = 1 and
T, = 0,so that the state will change to 111 when a clock pulse is applied. This behav-
ior is indicated by the dashed line in Figure 12-25. Once state 111 is reached,
successive clock pulses will cause the counter to continue in the original counting
sequence as indicated on the state graph. When the power in a circuit is first turned

FIGURE 12-23 0 :""1 f": CTT f__l_"_’l
Counter Using c’ C B’ B A’ A
T Flip-Flops FF FF FF

CK Tc CK Ty CK T,

Clock

S

T T
|
[t g Sttty M Stk st !
L___*_l::::':::l:::::i'__ '
- “4
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FIGURE 12-24
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FIGURE 12-25
State Graph for @

Counter @ @

on, the initial states of the flip-flops may be unpredictable. For this reason, all of the
don’t-care states in a counter should be checked to make sure that they eventually
lead into the main counting sequence unless a power-up reset is provided.

In summary, the following procedure can be used to design a counter using T
flip-flops:

1. Form a state table which gives the next flip-flop states for each combination of
present flip-flop states.

2. Plot the next-state maps from the table.

3. Plota T'input map for each flip-flop. When filling in the 7\, map, T\, must be 1 when-
ever Q" # Q. This means that the 7, map can be formed from the Q" map by
complementing the Q = 1 half of the map and leaving the Q = 0 half unchanged.

4. Find the T input equations from the maps and realize the circuit.

Counter Design Using D Flip-Flops
For a D flip-flop, Q" = D, so the D input map is identical with the next-state map.
Therefore, the equation for D can be read directly from the Q" map. For the counter
of Figure 12-21, the following equations can be read from the next-state maps shown
in Figure 12-22(a):

D.=C"=B Dy=B"=C+ BA’

D,=A"=CA" + BA'=A'(C+ B)

This leads to the circuit shown in Figure 12-26 using D flip-flops. Note that the

connecting wires between the flip-flop outputs and the gate inputs have been omit-
ted to facilitate reading the diagram.
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FIGURE 12-26 c’ C B’ B A A
Counter of I I I I I |

Figure 12-21 FF FF FF
Using D Flip-Flops CK D¢ CK Dy CK D,
O | [®) [*] \

B
C A
B A C B
Clock —>

12.5 Counter Design Using S-R and J-K Flip-Flops

The procedures used to design a counter with S-R flip-flops are similar to the pro-
cedures discussed in Sections 12.3 and 12.4. However, instead of deriving an input
equation for each D or T flip-flop, the S and R input equations must be derived. We
will now develop methods for deriving these S and R flip-flop input equations.
Table 12-5(a) describes the behavior of the S-R flip-flop. Given S, R, and Q, we can
determine Q™ from this table. However, the problem we must solve is to determine S
and R given the present state Q and the desired next state Q™. If the present state of
the flip-flop is Q = 0 and the desired next state is Q" = 1,a 1 must be applied to the
S input to set the flip-flop to 1. If the present state is 1, and the desired next state is 0,
a 1 must be applied to the R input to reset the flip-flop to 0. Restrictions on the flip-
flop inputs require that S = 0 if R = 1, and R = 0 if § = 1. Thus, when forming Table
12-5(b), the rows corresponding to QQ* = 01 and 10 are filled in with SR = 10 and
01, respectively. If the present state and next state are both 0, S must be 0 to prevent
setting the flip-flop to 1. However, R may be either O or 1 because when Q =0, R = 1
has no effect on the flip-flop state. Similarly, if the present state and next state are
both 1, R must be 0 to prevent resetting the flip-flop, but S may be either 0 or 1. The
required S and R inputs are summarized in Table 12-5(b). Table 12-5(c) is the same as
12-5(b), except the alternative choices for R and S have been indicated by don’t-cares.

TABLE 12-5 (a) (b) (c)
Inputs ]

000 0 0 0 {0 0 0 0 0 X
0 0 1 1 01 0o 1 10
010 0 0o 1 10 1 0 0 1
011 0 1 0 0 1 1T 1 X 0
100 1 00
101 | 1 L I1 0
110 - } inputs not
11 1 - J allowed
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TABLE 12-6 CBA ct Bt A" Sc|Rc| Ss|Rs| Sa| Ra
000 10 0 1100 |X]|0]X
00 1 - - - X | X | X|X|X]|X
010 0 1 1 o|X|x|o|1]o0
011 0 0 O o|x|o|1]0]1
100 1 1 1 Xxlo|l1]0|1]o0
101 - - - X[ X | X[ Xx|X] X
110 - - - X[ X | X[ X|X] X
11 1 01 0 ol1Ixlolol1

Next, we will redesign the counter of Figure 12-21 using S-R flip-flops. Table 12-3
is repeated in Table 12-6 with columns added for the S and R flip-flop inputs. These
columns can be filled in using Table 12-5(c). For CBA = 000, C =0 and C* =1, so
Se=1,R-=0.For CBA =010 and 011, C=0and C" =0,s0 Sc =0 and R = X.
For CBA =100,C=1and C" =1,s0 Sc =X and R = 0. For row 111, C =1 and
C*=0,50S8,=0and R-=1.For CBA =001,101,and 110, C* = X,s0 S = R = X.
Similarly, the values of Sz and R are derived from the values of B and B*,and S, and
R, are derived from A and A* The resulting flip-flop input functions are mapped in
Figure 12-27(b).

It is generally faster and easier to derive the S-R flip-flop input maps directly
from the next-state maps than to derive them from the state table as was done in
Table 12-6. For each flip-flop, we will derive the S and R input maps from the next-
state (Q*) map using Table 12-5(c) to determine the values for S and R. Just as we
did for the T flip-flop, we will use the next-state maps for C*, B", and A" in Figure
12-22(a) as a starting point for deriving the S-R flip-flop input equations. For con-
venience, these maps are repeated in Figure 12-27(a). We will consider one-half of
each next-state map at a time when deriving the input maps. We will start with flip-
flop C(Q = Cand Q" = C") and consider the C = 0 column of the map. From Table
12-5(c),if C =0and C* = 1,then S = 1 and R = 0.Therefore, for every square in the
C =0 column where C* =1, we plot Sc =1 and R- = 0 (or blank) in the corre-
sponding squares of the input maps. Similarly, for every square in the C = 0 column
where C* = 0, we plot S = 0 and R = X on the input maps. For the C = 1 column,
if C* =0, we plot Sc =0 and R = 1;if C" =1, we plot Sc = X and R = 0. Don’t-
cares on the C* map remain don’t-cares on the S and R, maps, because if we do not
care what the next state is, we do not care what the input is. In a similar manner, we
can derive the Sz and Rz maps from the B* map by working with the B = 0 (top) half
of the map and the B = 1 (bottom) half of the map. As before, 1’s are placed on the
S or R map when the flip-flop must be set or reset. S is a don’t-care if Q = 1 and no
state change is required, and R = X if Q = 0 and no state change is required. Finally,
S, and R, are derived from the A™ map. Figure 12-27(c) shows the resulting circuit.

The procedure used to design a counter with J-K flip-flops is very similar to that
used for S-R flip-flops. The J-K flip-flop is similar to the S-R flip-flop except that J
and K can be 1 simultaneously, in which case the flip-flop changes state. Table 12-7(a)
gives the next state (Q") as a function of J, K, and Q. Using this table, we can derive
the required input conditions for J and K when Q and Q™ are given. Thus if a change
from Q = 0to Q" = 1 is required, either the flip-flop can be set to 1 by using J = 1
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FIGURE 12-27 C C C
Counter of BA 0 1 BA 0 1 BA 0 1
Figure 12-21 Using of1]1 0|01 0] 0] 1 [<~——A=0halt
S-R Flip-Flops B =0 half
01| X | x o] X | x 01| X | x
A =1 half
1folo 1nfol1 1folo
B =1 half
10]0]x 01 |x 0]1]x
c* B At
(a) Next-state maps
c c c
BAN_ O | BAN_ O | BaAN_ 0 | L
00 (1]x) 00| X 1) 00| x Ll)
or|x ] x) (x [ x) 01 m X X || x on (X x) X | X
x| 11 Llj X il |
0l x|x X 10 X x |(x) 10 X (1 EQ
T T
Rc S¢ Ry Sp Ry Sa
Re=A Se=B’ Rp=C’A Sp=C Ry=A Sy=CA +BA
=A(C+B)
(b) S-R flip-flop equations
c’ c B’ B A A
| | | | | |
o’ 0 o’ 0 o’ 0
R S R S R S
| | | |
A B c A
A C’ A’
CLK
B

(c) Logic circuit

(and K = 0) or the state can be changed by using / = K = 1. In other words, J must
be |, but K is a don’t-care. Similarly, a state change from 1 to 0 can be accomplished
by resetting the flip-flop with K = 1 (and J = 0) or by changing the flip-flop state
with / = K = 1. When no state change is required, the inputs are the same as the
corresponding inputs for the S-R flip-flops. The J-K flip-flop input requirements are
summarized in Tables 12-7(b) and 12-7(c).

We will now redesign the counter of Figure 12-21 using J-K flip-flops. Table 12-3
is repeated in Table 12-8 with columns added for the J and K flip-flop inputs. We
will fill in these columns using Table 12-7(¢). For CBA = 000, C =0 and C* =1,
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TABLE 12-7 (a) (b)
J-KF|ip-F|Op J K Q QJr QQ+ J K
Inputs 5750 0 00
00 1 1 0 0 {01
010 0 10
011 0 0 1 {11
100 1 {01
101 1 10 11
110 1 {00
111 0 T 1 10
TABLE12-8 CB A | C" B* A Jo KelJds Kglda Ka
00 0 10 0 1[xlox]olx
00 1 - - X| X | x| x| x]|x
010 0 1 1 ol x|x|ol|l1]x
01 1 00 0 ol x | x| 1]x]1
100 1T 1 1 Xx|lo|1]x]|1]x
10 1 - - - X| X | x| x| x]|x
110 - - X| X | x| x| x]|x
111 01 0 Xl 1Ixlolxl1

soJo=1and K. = X. For CBA =010 and 011,C=0and C" = 0,s0 J- = 0 and
Kc = X. The remaining table entries are filled in similarly. The resulting J-K
flip-flop input functions are plotted in Figure 12-28(b) on the next page. After
deriving the flip-flop input equations from the J-K maps, we can draw the logic cir-
cuit of Figure 12-28(c).

12.6 Derivation of Flip-Flop Input
Equations—Summary

The input equation for the flip-flops in a sequential circuit may be derived from the
next-state equations by using truth tables or by using Karnaugh maps. For circuits
with three to five variables, it is convenient to first plot maps for the next-state
equations, and then transform these maps into maps for the flip-flop inputs.
Given the present state of a flip-flop (Q) and the desired next state (Q7),
Table 12-9 gives the required inputs for various types of flip-flops. For the D flip-
flop, the input is the same as the next state. For the T flip-flop, the input is 1 when-
ever a state change is required. For the S-R flip-flop, S is 1 whenever the flip-flop
must be set to 1 and R is 1 when it must be reset to 0. We do not care what § is if
the flip-flop state is 1 and must remain 1; we do not care what R is if the flip-flop
state is 0 and must remain 0. For a J-K flip-flop, the J and K inputs are the same
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FIGURE 12-28 C C C
Counter of BA 0 1 BA 0 1 BA 0 1
Figure 12-21 Using of1]1 0|01 001 |<~——A=0half
J-K Flip-Flops B =0 half
o x| x o1 x| X o1l x
1mlo]o o1 1o
B =1 half
0fo|x 0f1]x 01
C+ B+ A+

(a) Next-state maps

c C C
BA 0 1 0 1 BA 0 1 0 1 BA 0 1 0 1
oof1| X X 00 /i\ X | X 00 (i\ X
o x| x x| x) o x || x m X o x [|x X
3 X X |1 I x|x L}J 1 ( X [ x) 11
10 X X | X 10 \X/ X 10 I 1 _X) X | X
Je Kc I Kp Ja Ky
Je=B Kc=A Jp=C Kz=CA J,=C+B Ky=1
(b) J-K flip-flop input equations
C’ C B’ B A’ A
I I I I I I
FF FF FF
K. CK g K; CK g, kK, CK J,
I I I I
A B’ C 1
C’ A C B

Clock

(c) Logic circuit (omitting the feedback lines)

as S and R, respectively, except that when one input is 1 the other input is X. This dif-
ference arises because S = R = 1 is not allowed, butJ = K = 1 causes a change of state.

Table 12-9 summarizes the rules for transforming next-state maps into flip-flop
input maps. Before applying these rules, we must copy any don’t-cares from the next-
state maps onto the input maps. Then, we must work with the Q = 0 and Q = 1 halves
of each next-state map separately. The rules given in Table 12-9 are easily derived by
comparing the values of Q* with the corresponding input values. For example, in the
Q = 0 column of the table, we see that J is the same as Q7 so the Q = 0 half of the J
map is the same as the O map. In the Q = 1 column, J = X (independent of Q), so
we fill in the Q = 1 half of the J map with X’s.
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TABLE 12-9 Rules for Forming Input Map
Determination of Q=0 Q=1 From Next-State Map*
EFIIp_:.IOP I;\put Type of Q = 0 Half of | Q